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The technical capabilities of cardiovascular imaging modal-
ities are rapidly growing and producing vast amounts of 

data. Clinicians and researchers alike have more opportunities 
than ever before to engage in the development and evaluation 
of novel image analysis algorithms with the ultimate goal of 
creating new tools to optimize patient care. Herein, we provide 
a framework for understanding current and future approaches 
to using machine learning in the increasingly data-rich arena 
of cardiovascular imaging.

Learning From Medical Images
Derived from both statistics and artificial intelligence, machine 
learning is a rapidly expanding field focused on building sys-
tems that make accurate predictions from data (Figure 1). 
These systems are built not by explicitly programming large 
sets of rules into a computer but by writing programs that 
can automatically learn those rules from the available data 
by example. Given the availability of large human-labeled 
data sets, many industry domains are now entirely reliant on 
machine learning. Examples include email spam filtering, 
online advertising, speech recognition, text translation, and 
image recognition. In medicine, early applications of machine 
learning can be traced back to algorithms such as the Patient 
Outcomes Research Team Score, which became a widely 
used tool for assessing the severity of pneumonia.1,2 Image 
analysis algorithms include those commonly used to aid in 
the interpretation of ECGs. More recent advances in research 

include algorithms that can identify retinopathy from retinal 
scans3 and grade biopsy-positive skin malignancies from pho-
tographs of skin lesions.4

With respect to cardiovascular imaging, machine learning 
can augment clinical and research activities in many ways, and 
specific approaches can be described using the terminology in 
Table 1. Machine learning methods have to date been used in 2 
broad and interconnected areas: (1) automating tasks that might 
otherwise be performed by a human and (2) generating clini-
cally important new knowledge, distilled from large amounts 
of imaging data. In Table 2, we summarize recently published 
studies that have used machine learning methods to analyze 
cardiovascular images collected from ultrasound, computed 
tomography (CT), magnetic resonance imaging, and nuclear 
imaging platforms. Most studies have focused on task-oriented 
problems, but studies of algorithms aimed at uncovering novel 
clinical insights—including new ways to predict mortality 
based on existing clinical data—are increasing in frequency.16

The types of problems that machine learning is able to 
solve can be illustrated by referring to an outline of image 
analysis workflow (Figure 2) and by using examples from 
ECG algorithm development. For the standard 12-lead ECG, 
humans were originally needed to manually perform the 
tasks of data acquisition, cleaning, and interpretation. Over 
time, algorithms were created to minimize motion artifacts 
and produce cleaner ECG tracings (ie, registration) and then 
to identify and provide reproducible measurements of PR 
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and QRS, as well as other interval durations (ie, segmenta-
tion). Advanced algorithms can now assign clinical traits to 
a patient’s ECG (ie, labeling): more straightforward labeling 
might include defining the presence of chamber hypertrophy, 
while more sophisticated labeling might involve distinguish-
ing between ST-segment–elevation myocardial infarction and 
pericarditis. When an algorithm analyzes ECG features to 
assign the correct label and, in effect, to predict whether the 
tracing is from a patient with ST-segment–elevation myocar-
dial infarction or pericarditis, the task may be accomplished 
by using a combination of supervised and unsupervised learn-
ing methods (Figure 2). Supervised methods require the use 
of tracings labeled by a cardiologist to teach an algorithm how 
to recognize malignant versus benign patterns. Meanwhile, 
unsupervised methods allow an algorithm to identify indi-
vidual ECG features that tend to cluster (ie, co-occur) in the 
setting of ST-segment–elevation myocardial infarction or 
pericarditis. By operationalizing an extensive part of the total 
workflow (including registration, segmentation, and labeling), 
an algorithm-driven approach to analyzing an ECG tracing 
can come close to replicating the work of a human expert, 
thus, saving on time and human resources. As an example, 
automated external defibrillator algorithms have averted the 
absolute need for trained personnel to decide when to shock 
in the setting of a cardiac arrest. It is important to note, how-
ever, that no new knowledge is generated from the process just 
described (above and beyond what a human expert would pro-
duce). Therefore, further research is now underway to explore 
the extent to which machine learning techniques can identify 
new inter-relations between previously characterized ECG 
features and even use original tracing data to identify novel 
ECG features of potential clinical importance.17–19

Learning From Cardiovascular Images
A typical cardiovascular imaging data set is much larger and 
higher in dimension than a typical ECG data set. However, the 
same general framework applies with respect to how machine 
learning techniques can be used to augment various parts of 
the image analysis workflow (Figure 2).

Information Extraction
The first important task is to acquire high-quality imaging 
data. No matter how flexible, all algorithms will require some 
interface customization with respect to locale, institution, and 
modality-specific configurations and infrastructures. As car-
diovascular imaging modality techniques continue to evolve, 
algorithms also need to accommodate measures (ie, variables) 
and layers of imaging data added over time; thus, highly cus-
tomized algorithms may need substantial edits to handle new 
data types. With respect to optimizing image quality, filtering 

and other algorithms can be applied in real time even though 
interindividual variation in clinical characteristics will always 
lead to variations in image quality.

Most data sets will inevitably require some amount of data 
cleaning. An important part of preprocessing image-based 
data is registration, which involves aligning all images into a 
standardized format, so that specific imaging features or ana-
tomic regions of interest are displayed in time and in space 
as consistently as possible. Such procedures are common for 
modalities, such as nuclear imaging, wherein patient scans 
are frequently subject to attenuation correction. Registration 
also refers to the assimilation of multiple intrinsic images 
(eg, T1, T2, and diffusion tensor imaging for cardiovascular 
magnetic resonance imaging) and the aggregation of images 
from different views to create a single coherent image (eg, 3D 
CT reconstruction of coronary artery anatomy). The ultimate 
goal of registration is to standardize image quality and views 
across multiple patients to facilitate cohort-wide and even 
population-scale analyses.

After registration, there is the need to identify ana-
tomic regions of interest for analysis (ie, segmentation). 
Segmentation traditionally requires an expert to identify which 
parts of the image are deemed important (eg, cardiac chamber 
structures, myocardial wall regions, coronary artery branches, 
valves, etc). Specialized segmentation may be required to 
identify specific regions of interest (eg, the middle scallop of 
the posterior mitral valve leaflet) or define the parameters of 
a novel measure (eg, skewness of pixel density distribution 
within a prespecified region of interest). Some early successes 
in automating segmentation include the application of a ran-
dom forest classifier to CT angiography data to efficiently 
and accurately segment the pericardium and calculate volume 
of epicardial fat.20 More complex segmentation tasks require 
defining not only a specific anatomic structure but also during 
what parts of the cardiac cycle that structure should be mea-
sured. A great deal of effort has been devoted to improving 
automated segmentation given the potential to avoid what is 
usually a laborious, time-consuming, and error-prone process 
when performed by humans (Table 2).

The information extraction portion of the image analy-
sis workflow, once completed, should produce a data set that 
includes features ready for measurement, as well as an orga-
nized structure of data elements that can be used to potentially 
create novel features for analysis.

Image and Data Analysis
Traditionally, data analysis involves trained technicians select-
ing anatomic structures and performing measurements that are 
over-read by a cardiologist or radiologist who often adds diag-
nostic information to the record. The data are then combined 

Statistics Artificial Intelligence

Deep Learning

Machine Learning Figure 1. Machine learning in context.
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Table 1. Glossary of Terms

Term: Definition

Registration is used to align multiple images into a single integrated image. The original images may be from different slices, views, times, and modalities. 
Registration is intended to overcome distortions, such as those from artifact, attenuation, rotation, scale, and skew, that will vary from image to image. 
Registration is required to combine different images together into a more complete source of information.

Segmentation involves dividing an image into multiple meaningful parts, with regions of interest clearly identified. Segmentation is typically used to identify 
objects, boundaries, or other relevant information contained in an image.

Artificial intelligence refers to the broad set of academic disciplines within computer science that strives to use computer hardware and software to build 
systems capable of goal-directed behavior. The term may also refer to the constructed system itself.

Machine learning is a computer science discipline and a subfield of both artificial intelligence and statistics (Figure 1). Machine learning is focused on teaching 
computers to perform predictive tasks without explicitly programming in the rules to perform this task. It involves getting computers to learn from experience, 
which is typically provided in the form of data, through fitting complex statistical models. As such, machine learning and statistics are closely related fields, 
whereby many machine learning concepts are connected to or have a history in statistics.

Unlabeled data are any data not associated with any clinical trait or outcome of interest. Typically, unlabeled data consist of samples when they are first 
generated or measured. Some examples of unlabeled imaging data might include raw ultrasound, CT, MR, or nuclear images. There are no descriptors or 
categories ascribed to unlabeled data.

Labeled data result from associating unlabeled data with one or more meaningful descriptions. A label may be the definition of a measurement, the definition 
of a clinical trait, or the definition of a clinical outcome. For instance, a linear measure may be labeled as LVEF, a binary variable may be labeled as denoting 
the presence or absence of LV hypertrophy, and another binary variable may be labeled as denoting the presence or absence of heart failure. Labels for data 
are often obtained by asking humans to carefully analyze or make judgments about unlabeled data (eg, asking a technical expert to trace the LV endocardium in 
multiple views to derive a biplane Simpson LVEF or asking an expert over-reader to adjudicate the presence or absence of rheumatic mitral valve disease). Thus, 
the process of labeling data often incurs substantial time and resource costs. The most successful machine learning algorithms, namely supervised learning 
algorithms, all require labeled data.

Weak labels are labels that convey limited information but are easier to create than nonweak labels. A data set may be said to have weak labels if the labels are 
inaccurate, sparse (eg, the data set is missing many labels), or incomplete (eg, the labels indicate the presence, not the location, of a tumor in an image). Training 
most modern methods for segmentation or abnormality detection requires manually labeled data, but acquiring large sets of reliable labels in many clinical 
machine learning tasks requires large amounts of time from technical experts. This process may be prohibitively difficult because of not only the monetary cost of 
expert attention but also because of the fact that, for some labeling tasks, even domain experts may disagree on how to label a particular image (ie, interobserver 
reproducibility). It is, therefore, of interest to find ways to develop algorithms that could learn from data with weaker labels that are less expensive, possibly less 
accurate, but that are much more easily obtainable.

Supervised learning algorithms are machine learning algorithms that fit models using pairs of input features and labeled data. The goal of these models is to 
correctly predict the label associated with some input features. An input feature might be an image of the LV, and the label might be a number indicating that the 
LV is present versus absent (or that the structure is an LV and not an atrium or a valve). Examples of supervised learning algorithms include linear regression, 
logistic regression, support vector machines, and decision trees. Supervised learning is currently the most successful type of machine learning—it is both the 
subject of the majority of machine learning research and it is by far the most commercially successful application of machine learning.

Unsupervised learning algorithms are models constructed using unlabeled data. These models attempt to capture relationships inherent to the structure of the 
features themselves. Examples include clustering and principal components analyses.

Neural networks are a family of supervised and unsupervised learning algorithms characterized by stacked layers of processing, often alternating linear and 
nonlinear transforms. Neural networks, historically known as multilayer perceptrons, were originally inspired by how the brain processes information but are now 
widely regarded to be only weakly related to real biological systems.

Deep learning is a subfield of machine learning, concerned with the research and development of deep neural networks. Deep neural networks are neural 
networks with many layers stacked on top of each other (often 5–25, but sometimes hundreds of layers deep). Until recently, training these algorithms on very 
large data sets (eg, millions of images) was completely impractical. The advent of faster machines, in particular the GPU, enabled the resurgence of this technique. 
Deep neural networks have led to major breakthroughs recently in speech recognition, machine translation, natural language, and image processing.

CNN are deep neural networks that are characterized by having efficient convolutional operations as the base layers of the network. Originally introduced for 
handwritten digit recognition,5 convolutional networks use sliding window operations on images rather than per-pixel parameters. This helps to save memory and 
computation while encoding useful translational invariance into the model (eg, the model is not reliant on identifying a specific value for a specific pixel). Recent 
methodological advancements in computing and their application to large data sets have led to breakthroughs across many imaging tasks using CNNs.6

GPU is specialized computer hardware built specifically to expedite the processing of operations typically occurring in computer graphics. Many of these 
operations involve extensive use of linear algebra, which is also the bulk of processing in deep learning. The fitting of deep learning models can be accelerated 
many times over through the use of this specialized hardware.

Transfer learning is related to the concept that humans can apply relevant knowledge from previous learning experiences to new tasks. Most machine learning 
algorithms, by contrast, address isolated tasks. A model trained with one set of features and labels cannot be adapted to similar tasks without full retraining, which 
is often costly and time-consuming. Transfer learning refers to taking knowledge gained on an original task and efficiently learning to perform well on a separate 
but related task, often with much less data required than if the related task was attempted in isolation.

CNN indicates convolutional neural network; CT, computed tomography; GPU, graphics processing unit; LV, left ventricle; LVEF, left ventricular ejection fraction; and 
MR, magnetic resonance.
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Table 2. Overview of Machine Learning Algorithms Applied in Cardiovascular Imaging Studies

Author N Study Design Methods Measures Main Findings

Berchialla et al7 228 Cross-sectional •  Bayesian 
network

•  Logistic 
regression

•  Random forest
•  Artificial neural 

network
•  SVM

•  Use data from stress 
echo and CTA to predict 
future cardiovascular 
events (myocardial 
infarction or death)

•  Bayesian network outperformed other 
methods

•  Measures of LV dysfunction and 
CAD extent had greater impact in 
predicting target event

Isgum et al8 584 Longitudinal •  Linear and 
quadratic 
discriminant

•  k-NN
•  SVM

•  Automatically score 
coronary calcium in 
low-dose, noncontrast-
enhanced chest CT 
scans 

•  Cardiovascular risk was best 
determined by merging results of 3 
best-performing classifiers (2-stage 
classification with k-NN, 2-stage 
classification with k-NN and SVM, 
1-stage classification with k-NN with 
selected features)

•  Detected on average 157/198 mm3 
(sensitivity 79.2%) of coronary 
calcium volume with average 4 mm3 
false-positive volume 

Lee et al9 205 Cross-sectional •  Decision tree
•  Naive Bayes
•  k-NN
•  SVM

•  Analyze AAA geometry 
on contrast CT images

•  Determine whether AAA 
wall surface curvatures 
predict rupture risk 

•  k-NN demonstrated the highest 
accuracy (85.5% compared with 
68.9% using maximum diameter 
alone)

•  Accuracy of SVM, decision tree, and 
naive Bayes was 83.4%, 83.3%, and 
80.1%, respectively 

Mohammadpour et al10 115 Cross-sectional Fuzzy rule-based 
classifying system

Use myocardial perfusion 
scan and clinical 
variables to predict CAD

Classifier determined most important 
risk factors for CAD and correctly 
detected patients who did not need 
invasive coronary angiography with 
92.8% accuracy

Xiong et al11 140 Cross-sectional •  Naive Bayes
•  Random forest
•  AdaBoost

•  Determine physiological 
manifestation of 
coronary stenoses by 
assessing myocardial 
perfusion on CTA 
images 

•  Method may improve diagnosis of 
obstructive coronary artery stenoses

•  AdaBoost performed better than 
other algorithms with accuracy 0.70, 
sensitivity 0.79, and specificity 0.64 

Knackstedt et al12 255 Cross-sectional •  Vendor-
independent 
software AutoLV 

•  Obtain measures 
of LV volumes, EF, 
and average biplane 
longitudinal strain using 
ultrasound images

•  Compare values with 
visual estimation and 
manual tracking

•  Algorithm was time efficient (8±1 s/
patient), reproducible, and technically 
feasible for LVEF and longitudinal 
strain assessment 

Arsanjani et al13 713 Longitudinal •  Machine learning 
algorithm 
LogitBoost 

•  Use SPECT perfusion 
data to predict early 
revascularization in 
patients with suspected 
CAD 

•  LogitBoost sensitivity (73.6±4.3%) 
for predicting revascularization 
was similar to one expert reader 
(73.9±4.6%) and perfusion measures 
only (75.5±4.5%)

•  LogitBoost specificity (74.7±4.2%) 
was better than both expert readers 
(67.2±4.9% and 66.0±5.0%) and 
similar to total ischemic perfusion 
deficit (68.3±4.9%)

•  LogitBoost AUC (0.81±0.02) was 
identical to one reader but superior 
to another reader (0.72±0.02) and 
perfusion measures only (0.77±0.02)

(Continued )
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with clinical data into a single data set, and conventional statistics 
are used to determine whether a given measurement is relevant 
to a clinical outcome. Machine learning approaches have now 
expanded to assist not only with registration and segmentation 
but also with performing the measurements normally made by 
a human. Just as ECG algorithms have continued to improve 
the ability to correctly identify PR, QRS, and QT intervals on 
a 12-lead tracing and, in turn, determine measurements of these 
interval durations, machine learning algorithms have been devel-
oped to automatically detect the left ventricle (LV) endocardium 
and provide measures of LV volumes and ejection fraction.12 
Many machine learning approaches are developed as part of 
online data science competitions, including one focused on deter-
mining ejection fraction from CMR scans collected from >1000 
patients.21 Although not yet able to perform completely reliable 
measures of LV ejection fraction (especially when image quality 
is limited), all such algorithms continue to improve in accuracy.22

There are 2 potential benefits of algorithms designed to 
automate measurements. First, automated standardized mea-
surements can be applied to large data sets, permitting detec-
tion of subtle relations between anatomic variance and clinical 
outcomes. For instance, automated measures of mitral valve 
thickening and prolapse could facilitate large-scale analyses of 
early mitral valve disease while avoiding inter-reader bias and 
the need for case–control studies of manually curated measure-
ments.23–25 Second, advanced measures that are expensive or 
time-consuming to perform can also be automated and applied 
to large cohorts if the advanced measures are closely related 
to standard measurements. Examples of advanced measures 

include coronary plaque volume by CT, extracellular volume 
fraction by cardiovascular magnetic resonance, coronary 
flow reserve by positron emission tomography, and myocar-
dial deformational strain by echocardiography. Although a 
human may need specialized training to learn how to repro-
ducibly perform speckle tracking strain analysis of the LV26, 
for instance, an algorithm already optimized to trace the LV 
for conventional volumetric measurements can be adjusted to 
automate endocardial tracings for speckle tracking measures.27

Beyond automating measurements, a well-developed 
strength of machine learning is in the analysis of the mea-
surement data in relation to outcomes (ie, prediction). When 
building a predictive model, both machine learning and con-
ventional statistical techniques will attempt to characterize 
the relationships between predictors (eg, imaging-based mea-
sures) and outcomes (eg, cardiovascular events). However, 
traditional statistics will create models that permit describ-
ing these relationships in easily comprehensible terms, such 
as an odds ratio. Although the field of machine learning 
includes the application of conventional statistics (Figure 1), 
newer machine learning approaches will fit models to cap-
ture the relationships between predictors and outcomes with 
the highest degree of fidelity possible, even at the expense of 
easy interpretability. Given their flexibility, modern machine 
learning methods are especially valuable when (1) the most 
accurate predictions are desired, even at the expense of a 
clear understanding of how these predictions are made or (2) 
the relationships between predictors and outcomes are likely 
to be complex or nonlinear, such that interpretability is not 

Berikol et al14 228 Longitudinal •  SVM
•  Artificial neural 

network
•  Naive Bayes
•  Logistic 

regression

•  Diagnose acute 
coronary syndrome 
and decide whether 
to discharge or admit 
patients considering 
their symptoms, 
electro- and 
echocardiographic 
findings, levels of 
cardiac enzymes

•  SVM had the highest predicting 
accuracy 99.13%, sensitivity 
98.22%, and specificity 100%

•  Accuracy of artificial neural network, 
naive Bayes, and logistic regression 
was 91.26%, 88.75%, and 90.1%, 
respectively 

Celutkiene et al15 256 Longitudinal Custom 
multiparametric 
mathematical 
model

Analyze dobutamine 
stress echocardiography 
with speckle tracking 
(compared with 
conventional wall motion 
analysis) to detect 
myocardial ischemia

Algorithm detected myocardial 
ischemia in patients with coronary 
stenoses ≥50% with sensitivity 91.6% 
and specificity 86.3%, compared with 
76.8% and 89%, respectively, for visual 
assessment

Motwani et al16 10 030 Longitudinal Custom-built 
predictive classifier

Predict 5-year all-cause 
mortality in patients 
with suspected CAD 
undergoing CCTA

•  Method showed performance 
superior to use of clinical and CCTA 
findings alone

•  AUC was 0.79 vs 0.61 for 
Framingham risk score, 0.64 for 
segment stenosis score, 0.64 for 
segment involvement score, and 0.62 
for modified Duke index

AAA indicates abdominal aortic aneurysm; AUC, area under the curve; CAD, coronary artery disease; CCTA, coronary CTA; CT, computed tomography; CTA, CT 
angiography; EF, ejection fraction; LV, left ventricle; k-NN, k-nearest neighbor; SPECT, single positron emission computed tomography; and SVM, support vector 
machine.

Table 2. Continued

Author N Study Design Methods Measures Main Findings
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expected from the outset. In these situations, traditional sta-
tistical methods may be extremely hampered or completely 
fail.28 However, such situations are relevant to cardiovascu-
lar imaging databases because it is often unclear at the outset 
what input imaging features will matter for predicting a clini-
cal outcome while the imaging features themselves are often 
too numerous or complex to decipher manually.

The ability of machine learning to handle large high-
dimensional data sets is also attractive if only given the sheer 
size of cardiovascular imaging databases. It is well recognized 
that all imaging modalities routinely produce a vast amount of 
data per patient. A single CT scan results in tens to hundreds 
of images, each comprising millions of pixels. Cine imaging 
expands this volume of data many times over. Thus, there is 
enormous potential gain from comprehensively analyzing not 
only typical measurement data but also image-based raw data, 
from which new measures can be generated. However, if the 
task of predicting clinical outcomes is to begin at the raw pixel 
level for a given imaging study, a conventional data analysis 
approach is quickly overwhelmed by all the possible combi-
nations of pixels, filters, or image processing techniques that 
could be used in attempts to reveal a relationship between the 
image and an outcome. Modern machine learning techniques 
are able to automatically discover such relationships at the 
pixel level, primarily via deep learning.

Deep Learning
Deep learning is a type of machine learning that includes a class of 
algorithms called neural networks, which are intended to model 
high-level abstractions of data from stacked layers of processing, 
often alternating linear and nonlinear transformations. Deep neu-
ral networks, consisting of up to dozens or even hundreds of layers 
stacked on top of one another, have led to major breakthroughs in 

image, speech, and text processing. These methods are currently 
considered state of the art for making predictions from imaging 
data. In particular, convolutional neural networks (CNNs),5 a type 
of deep neural network, can automatically learn to discover and 
combine local image features (such as an edge or a color contrast) 
in increasing levels of abstraction to ultimately enable prediction 
of an outcome. Although CNNs are most effective only when 
applied to large data sets, medical imaging databases of adequate 
size are now commonplace. Special advantages of CNNs include 
their ability to manage complicated relationships between the 
inputs (ie, image data) and the outputs (ie, outcomes) that are not 
easily captured by manual measurements.

When applied to image-based data sets, ideally large in 
size,29 deep learning algorithms enable unassisted approaches 
to discovering and testing new imaging features. Although 
still in development, some approaches to creating novel fea-
tures may even be applied to completely unlabeled images.30 
Deep learning algorithms, in certain circumstances, can per-
form unsupervised learning, which is important because most 
existing imaging data sets are not linked to a clearly defined 
outcome at the outset. In some cases, training on a large body 
of unlabeled data can allow an algorithm to perform better 
when applied to only a small amount of labeled data.31 Using 
deep learning to perform unsupervised feature generation is 
attractive for many reasons, including efficient and seamless 
potential application to almost any domain and problem. The 
main drawback, however, is the interpretability of any newly 
discovered imaging feature. Whether applied to imaging or 
nonimaging data sets, deep learning creates features that are 
often unintuitive and difficult to comprehend. Recognizing 
this limitation, ongoing research is focused on stimulating 
neural networks to visually manifest the most activating char-
acteristics or regions of an image (Figure 3).30,31

Acquire
images

Clean and process data
[registration]

Identify anatomy
[segmentation]

Link features to clinical 
trait or outcome

[labeling]

e.g. “LV ejection fraction”, 
“Rheumatic mitral valve”, 

“heart failure case”

Information Extraction

[no labeling]

Identify inter relationships
among imaging features

-

Relate features
to outcomes

Relate features 
to outcomes

Unsupervised LearningSupervised Learning

Measurements MeasurementsTechnicians make 
measurements

Experts over-read 
measurements

Experts interpret 
measurements and 
provide diagnoses

Relate measures 
to outcomes

Algorithm Driven ProcessesCurrent Practice

Figure 2. Image analysis workflow. LV indicates left ventricle.
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It is possible that the most productive approaches to 
obtaining knowledge from large volumes of imaging data 
will involve combining deep learning features with adjunctive 
information. Technologies that integrate otherwise disparate 
information sources can possibly enable synthesis of all avail-
able information related to a particular medical image, includ-
ing data pertaining to image acquisition, text from preliminary 
and finalized cardiovascular imaging and radiological reading 
reports, and data from clinical notes, complementary diagnos-
tics, and any additional records that are related to the imaged 
patient (Figure 3). An analysis of images and associated 
source data can potentially lead to improved clustering, clas-
sification, and, in turn, discovery of precision phenotypes.32,33 
The discovery of any novel imaging biomarker, of course, 
will still require validation and rigorous further investigation 
before its integration into practice.

Notwithstanding all advances to date, it should be empha-
sized that a single deep learning network cannot easily syn-
thesize images from different types and sources of data in the 
way that humans are currently able to do when performing a 
clinical or research evaluation. One day, such complex and 
intricate tasks may be handled by a collection of networks, 
each assigned to a different type of data set. Another option 
is transfer learning, which involves applying knowledge from 
one task to address another task (Table 1) and this approach 
may be helpful for related data sets. Ideally, CNNs trained on 
a large and laboriously hand-labeled data set can be retuned to 
perform relatively well on related smaller-sized data sets, so 
that a model that is well trained on one large original task can 
be leveraged to succeed quickly at another. For example, we 
may train a CNN to predict 1-year risk for cardiovascular death 
from a large original data set of echocardiograms. Later, for a 
separate data set, this same CNN can be repurposed to predict 
the likelihood of hospital readmission directly from ultrasound 
images even if the new data set may only be 1 of 10th or 1 of 
20th the size of the original.

Challenges and Future Directions
The highly trained human act of creating a finely tuned and 
nuanced interpretation of a medical image involves assimi-
lating objective data with intuition, prior clinical experience, 
and internalized knowledge that is not in the medical record. 
Therefore, while machine learning approaches rapidly advance 
in capabilities, their performance will always be limited by 
the availability and quality of the data and labels from which 
they can learn. Accordingly, machine learning algorithms may 
remain limited in areas of cardiovascular imaging that lack an 
abundance of data for training an algorithm (eg, rare diseases, 
historic and deeply archived images, and image-related data or 
text that may not be easy to access). Similarly, in the absence of 
large training data sets, algorithms may continue to be limited 
in identifying uncommon presentations of common diseases. 
Given these limitations along with challenges pertaining to 
the interpretability of results from deep learning algorithms, 
we anticipate that even the most advanced machine learning 
approaches are more likely to offer a powerful complement to, 
rather than a complete replacement of, expert over-reading.

A perspective on the near-future role of machine learn-
ing as an aid in the clinical practice of cardiovascular imaging 

may again be borrowed from electrocardiography. Algorithms 
that assisted with interpreting ECGs were initially promoted 
and provided by diagnostic equipment companies and came to 
be widely used clinically by the 1990s.34 Although the diag-
nostic accuracy of ECG algorithms compared with cardiolo-
gists was initially questioned, their performance improved 
substantially over time. In some cases, algorithms may even 
be superior to cardiologists for characterizing some types 
of ECG traits (eg, diagnosing broad complex tachycardia).35 
However, algorithms may underperform for other traits (eg, 
diagnosing atrial fibrillation) and can even inadvertently lead 
over-reading cardiologists to misdiagnose more frequently 
when compared with cardiologists interpreting an ECG in 
clinical context without considering any input from an algo-
rithm.36 Thus, while ECG algorithms continue to improve 
alone or in combination,37 certain limitations in performance 
persist. Nonetheless, the diagnostic accuracy of current ECG 
algorithms is high,38 such that they now serve as an essential 
decision support tool routinely used in practice.

Despite the notion that machine learning is more likely 
to support rather than supplant clinical decision making, the 
potential to substantially transform the practice of medical 
imaging remains. There is a hope that, one day, whole imag-
ing studies in their original raw digital imaging and commu-
nications in medicine format, which are collected from large 
numbers of patients in a clinical practice, can be usefully 
interpreted by advanced machine learning algorithms without 
the need for any preprocessing or labeling. Although an ideal 
goal, achieving such a scenario will continue to be challenging, 
while there remains a lack of standardization in how images 
are acquired and processed before being analyzed. Methods 
for automating registration and segmentation continue to be in 
development, but there is still much work to be done before 
their performance can match that of trained human curators 
for most imaging modalities. Importantly, labeling remains a 
critical step for algorithm development, and supervised learning 
methods, especially deep learning, require large and accurately 
labeled data sets. Although technical experts can be recruited 
to assist in performing all the steps of data processing required 
before machine learning analyses (ie, registration, segmenta-
tion, and labeling), the best algorithms are trained on the largest 
data sets, and the human effort required to prepare such data 
sets is both costly and subject to human variations in perfor-
mance. Inadequate or poorly conducted data processing will 
lead to ambiguous data generation, and noninformative inputs 
lead to noninformative outputs. However, there are algorithms 
in development that can learn from weak labels (ie, labels that 
are incomplete or otherwise easier to obtain) at the cost of reli-
ability or accuracy. Also, if nonexperts are, on average, able to 
correctly label an image with minimal training, researchers can 
crowdsource the generation of labeled data sets. For complex 
pathologies, however, crowdsourcing tasks will need to be com-
partmentalized, organized, and staged with varying degrees of 
expert review involved at multiple stages. Thus, the extent to 
which crowdsourcing alone can be used to effectively or effi-
ciently develop algorithms for complete cardiovascular imaging 
interpretation, in a given setting, remains to be explored.

Beyond data set synthesis, a current practical limitation for 
running algorithms relates to the fact that handling enormous 
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amounts of data requires an extraordinary amount of computa-
tional power. Fortunately, large-scale computational resources 
are becoming more accessible. In particular, graphics process-
ing units have been optimized for the computational tasks on 
which machine learning models depend. The price of these 
devices has been declining, and they are also readily available 
for ad hoc rental on cloud platforms. A flexible cloud comput-
ing environment, notwithstanding access and privacy issues that 
continue to be evaluated,39 will be ideal for facilitating integra-
tion of imaging data that tend to exist in variable formats across 
multiple institutions and in siloed storage. On the research 
front, publicly funded initiatives are now underway to make 
biorepositories of imaging and imaging-derived data, collected 
from across research studies, available to the scientific commu-
nity for advanced and large-scale analyses via cloud computing.

Conclusions
Machine learning approaches have formed the core of many 
cardiovascular image acquisition and processing algorithms that 
are already in routine use. Given the rapid evolution of machine 
learning capabilities, continued advancements are being made 
in developing tools for optimizing not only how cardiovascular 

imaging measurements are performed but also how the results 
of these measurements can be interpreted. Currently avail-
able machine learning methods, particularly those based on 
deep learning, have generated growing interest in their poten-
tial to derive new insights from image-related data, as well as 
the images themselves, given the expanding size of existing 
databases. Increasingly large databases, however, will require 
increasing resources to create high-quality labels for enabling 
effective analyses. Therefore, continued progress will depend 
on a commitment to thoughtfully and strategically investing in 
such resources. Notwithstanding ongoing technical and logisti-
cal challenges facing the field, machine learning and particularly 
deep learning methods are very likely to substantially impact the 
future practice and science of cardiovascular imaging.
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Figure 3. Image analysis in context. HF indicates heart failure.
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