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Abstract:  

Aims: The lack of effective therapies for patients with heart failure with preserved ejection fraction 

(HFpEF) is often ascribed to the heterogeneity of patients with HFpEF. We aimed to identify distinct 

pathophysiologic clusters of HFpEF based on circulating biomarkers.  

Methods and Results: We performed an unsupervised cluster analysis using 363 biomarkers from 

429 patient with HFpEF. Relative differences in expression profiles of the biomarkers between 

clusters were assessed and used for pathway over-representation analyses. 

We identified four distinct patients subgroups based on their biomarker profiles : cluster 1 with the 

highest prevalence of diabetes mellitus and renal disease; cluster 2 with oldest age and frequent age-

related comorbidities; cluster 3 with youngest age, largest body size, least symptoms and lowest NT-

proBNP levels; and cluster 4 with highest prevalence of ischemic aetiology, smoking and chronic lung 

disease, most symptoms, as well as highest NT-proBNP and troponin levels. Over a median follow-up 

of 21 months, the occurrence of death or HF hospitalization was highest in clusters 1 and 4 (62.1% 

and 62.8% respectively) and lowest in cluster 3 (25.6%). Pathway over-representation analyses 

revealed that the biomarker profile of patients in cluster 1 was associated with activation of 

inflammatory pathways while the biomarker profile of patients in cluster 4 was specifically associated 

with pathways implicated in cell proliferation regulation and cell survival.  

Conclusion: Unsupervised cluster analysis based on biomarker profiles identified mutually exclusive 

subgroups of patients with HFpEF with distinct biomarker profiles, clinical characteristics and 

outcomes, suggesting different underlying pathophysiological pathways.  

 

Keywords: Heart Failure, Machine Learning, Heart Failure with Preserved Ejection Fraction, Cluster 

Analysis 
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Introduction:  

Heart failure with preserved ejection fraction (HFpEF) is labelled as the “single largest unmet 

need in cardiovascular medicine”(1). Despite accounting for approximately half of heart failure (HF) 

cases, an effective therapy for HFpEF is yet to be found. Several pathological mechanisms have been 

proposed as underlying mechanisms in HFpEF including systemic microvascular inflammation, 

cardiometabolic abnormalities and cellular and extracellular structural changes. However, studies 

targeting these mechanisms have yielded mixed results and have yet to show improved prognosis in 

these patients (2).  

The „heterogeneity‟ of HFpEF has been cited as a reason for clinical trials not being effective 

in HFpEF patients, suggesting that a “one size fits all” approach may not work in HFpEF (1,3). The 

pathophysiology of HFpEF is highly complex (4). The identification of mutually exclusive subgroups 

of patients with HFpEF based on their underlying pathophysiology may allow for the development of 

targeted treatment options. Several studies have sought to identify subgroups of patients with HFpEF 

using machine learning techniques, classifying these patients into clinical phenotypes and advocated 

phenotype specific treatment of these subgroups (5–9).  Such techniques have managed to identify 

subgroups of patients with similar phenotypic characteristics with differences in outcome. However, 

subgroups based on clinical characteristics do not necessarily represent differences in pathological 

mechanisms. Similar to HFpEF, heart failure with reduced ejection fraction (HFrEF) represents a 

heterogeneous group comprising of patients with a multitude of heart failure (HF) aetiologies, yet a 

common pathway of systemic neuroendocrine activation (2). Therefore, there are limitations in using 

this approach.  

We hypothesised that unsupervised machine learning techniques applied to protein 

biomarkers in HFpEF patients would allow the identification of biological HFpEF subgroups, 

representing different pathological mechanisms in HFpEF.  
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Methods:  

Patient population  

This study utilized patients from the Scottish cohort of BIOSTAT-CHF, which is described 

elsewhere (10). In brief, the Scottish cohort of BIOSTAT-CHF includes 1738 patients from six 

centres in Scotland, United Kingdom. Patients were required to be ≥ 18 years of age, diagnosed with 

HF and previously admitted with HF requiring diuretic treatment. Patients were also sub-optimally 

treated with angiotensin-converting enzyme inhibitors (ACEi) and beta-blockers with an anticipated 

up-titration over the following 3 months.  

Of the 1738 patients included, only patients with a left ejection fraction of ≥ 50% were 

included. Of the remaining 441 patients, there were 12 patients with missing biomarker values. 

Subsequent analyses were done with the remaining 429 patients.  

Clinical and biomarker measurements 

Medical history, physical examinations, echocardiography and laboratory tests were recorded 

at baseline as previously described (10). 

An overview of biomarkers and their pathophysiological functions are presented in the 

supplementary material, Figure S1 and S2. Four biomarker panels comprising each of 92 protein 

biomarkers provided by the Olink Bioscience analysis service (Uppsala, Sweden) were measured. 

These respective panels were Cardiovascular II (CVII), CVD III, Immune response and Oncology II 

panels. The proteins were profiled using Olink Proseek® Multiplex Inflammatory
96x96 

platform. The 

Proseek® kit uses proximity extension assay (PEA) technology, whereby oligonucleotide-labelled 

antibody probe pairs bind to their respective targets. Quantification was achieved using a Fluidigm 

BioMark™ real-time PCR platform. The platform provides normalised protein expression (NPX, 

log2-normalised), rather than an absolute quantification.   
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Across the panels there were several duplicates therefore the mean of normalized protein 

expression duplicates was used (supplementary materials). Further analyses were completed using the 

set of 363 non-redundant protein biomarkers.  

Statistical analysis 

A more comprehensive description of statistical methods used is provided in the 

supplementary materials. In short, the primary aim of this study was to identify mutually exclusive 

subgroups of patients based on their biomarker profile using 363 biomarkers, which are referred to as 

clusters. Principle component analysis (PCA) was performed in order to reduce biomarker dimensions 

and collinearity. Clustering was performed on principle components (PCs) with an eigenvalue of one 

or above using a hierarchical clustering algorithm. The NbClust package in R, which utilises an array 

of different indexes, was used in order to determine the optimal number of clusters. The number most 

often selected by these indexes is then selected as the optimal number of clusters (11,12).  

Differences between clinical characteristics of the clusters were compared using one-way 

analysis of variance (ANOVA), the Kruskal-Wallis test or chi-squared, χ
2
, test where appropriate. 

Differences between clusters biomarker means were plotted using a heatmap after z-standardization.  

The association of cluster membership with all-cause mortality and HF hospitalisation was 

investigated using Kaplan-Meier curves and the log-rank test. For multivariable analyses, cox-

regression models were performed, correcting for age, sex and previous HF hospitalisation and New 

York Heart Association (NYHA) class.   

Relative differences in protein biomarker levels between clusters was assessed using the 

Limma package in R (13).  Proteins were considered differentially expressed at a log2 fold-change cut-

off of 0.8 and false discovery rate corrected p-value of <0.05. Protein biomarkers identified to be 

differentially expressed were further investigated for pathway overrepresentation.  

Over-representation was assessed using ClueGo (in Gene Ontology in biological processes, 

KEGG and Reactome pathways)(14). This was performed using the hypergeometric test and the 

default Bonferroni step down method for multiple testing corrections. The whole annotation option 
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was used as a reference set and only biological processes with a corrected p-value ≤ 0.05 were 

considered significant.  

 

Results:  

Clustering outcomes 

The optimal number of clusters was six (Figure S3). Due to the small size, clusters 5 and 6 

(n=3 and n=2, respectively, table S1) were excluded from the downstream analyses which focused on 

the remaining four patient clusters. Expression patterns of biomarkers across the four clusters are 

depicted in the heatmap in Figure 1. Lower levels of biomarker means are depicted in lighter colours, 

while darker colours represent higher biomarker levels. Cluster 1 biomarkers are markedly higher 

compared to other clusters, while cluster 3 shows low levels of almost all biomarkers.  

Clinical characteristics  

Baseline characteristics of the 4 clusters are presented in Table 1. Patients in cluster 1 had the 

highest prevalence of chronic kidney disease (73.7%) and diabetes mellitus (53.4%), and had the 

highest plasma concentrations  of creatinine, glucose, gamma-glutamyl transferase (GGT) and growth 

differentiation factor-15 (GDF-15). Patients in cluster 2 were the eldest (mean age 80 years), with a 

high frequency of age-related comorbidities such as atrial fibrillation (46.5%) and hypertension 

(72.3%), however these did not reach significance. Patients in cluster 3 were youngest (mean age 74 

years), had the lowest prevalence of most comorbidities, except obesity (mean BMI 30.4 kg/m
2
, mean 

BSA 2.02 m
2
), were the least symptomatic and had the lowest plasma NT-proBNP concentrations 

(median 591 pg/L). Patients in cluster 4 had the highest prevalence of COPD (41.9%), smoking 

(65.1%) and ischemic aetiology (72.1%); were the most symptomatic and had the highest levels of 

NT-proBNP (median 2175 pg/L) and troponin (median 46.2 ng/l).  Table 2 shows the 

echocardiographic characteristics of the four clusters. In terms of cardiac structure and function, 

clusters were remarkably similar, except for a lower estimated right ventricular systolic pressure and 

tricuspid regurgitation velocity in patients from cluster 3.  

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



Differential expression analysis and pathway overrepresentation analysis 

In cluster 1 there were 29 proteins that were significantly upregulated compared to the rest of 

the clusters (supplementary table 2). At the fold-change cut-off, no proteins were found to be 

significantly up or down regulated in cluster 2 compared to the other clusters. A total of 26 proteins 

were discovered to be significantly downregulated in cluster 3 (supplementary table 3). In cluster 4, 1 

protein, was significantly downregulated, while 34 proteins were found to be significantly upregulated 

(supplementary table 4).  

Pathway over-representation analysis of the differentially expressed proteins per cluster 

yielded several significant pathways. The 29 differentially expressed proteins in cluster 1 yielded four 

significant biological processes (p <0.001): „tumour necrosis factor-activated receptor activity‟; 

„TNFs bind to their physiological receptors‟; „regulation of natural killer cell mediated immunity‟ and 

„regulation of regulatory T cell differentiation‟. The 26 downregulated proteins in cluster 3 were 

significantly associated with the following biological processes (p <0.001): „tumour necrosis factor -

activated receptor activity‟, „viral protein interaction with cytokine and cytokine receptor‟ and 

„regulation of cardiac muscle hypertrophy‟. The 34 upregulated proteins in Cluster 4 were 

significantly associated with 6 biological processes (p <0.001): „protein serine/threonine kinase 

inhibitor activity‟; „regulation of receptor internalisation‟; „viral myocarditis‟; „Kaposi sarcoma-

associated herpes virus infection‟; „PI3K/AKT signalling in cancer‟ and „positive regulation of 

phosphatidylinositol 3-kinase activity‟.   

Clinical Outcome 

After a median follow-up of 21 months, approximately 44% of patients either had been 

hospitalised for HF or died.  The occurrence of death or HF hospitalization was highest in clusters 1 

and 4 (62.1% and 62.8% respectively) and lowest in cluster 3 (25.6%). Rate of HF hospitalisation 

alone was highest in cluster 1 (36.2%), compared with 23.3% in cluster 2, 17.7% in cluster 3 and 

20.9% in cluster 4 (Figure 2).  After correction for age, sex, previous HF hospitalisation and  NYHA 

class, compared to cluster 1, patients in cluster 2 and 3 had a lower risk of death or HF hospitalization 
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([hazard ratio (HR) 0.58; 95% confidence interval (CI) 0.39-0.87] and HR=0.30 (95% CI 0.19 – 0.48), 

respectively,  supplementary table 5).   

 

Discussion:  

In this study, unsupervised machine learning identified distinct HFpEF clusters based on 

circulating biomarker profiles. The identified HFpEF clusters were remarkably different in their 

clinical characteristics and outcomes. Using a novel approach of employing differential expression 

analysis and pathways analysis on HFpEF clusters, we were able to identify dysregulated biological 

pathways in each cluster. This is the first study to provide a pathophysiological basis on a proteomic 

level of clinical phenotypes of HFpEF observed in previous studies.   

Previous studies that have identified HFpEF subgroups via cluster analyses have typically 

done so based on clinical characteristics, echocardiographic and laboratory data (5–9). One such study 

conducted by Shah et al. demonstrated that clustering based on clinical data, or “phenomapping” 

provided a better discrimination of risk than NT-proBNP and risk scores alone (5). Nevertheless, 

studies employing these techniques have not yet assessed the pathophysiology underlying these 

clinical phenotypes. Our results therefore extend prior studies by providing insights into potential 

biological mechanisms at a proteomic level, that may underpin the observed clinical phenotypes, thus 

paving the way to mechanism-based pathophysiologic interventions in specific HFpEF subgroups. 

The added value of our biomarker-based approach is evident in that patients in different biomarker 

clusters could have similar echocardiographic and clinical profiles yet differ drastically in clinical 

outcome compared to other subgroups. One such example of this is clusters 1 and 2 – both these 

clusters were elderly patients with multiple age-related comorbidities who had indistinguishable 

echocardiographic features; yet cluster 2 had a 40% lower adjusted risk of death or HF hospitalization 

compared to cluster 1.   
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Clinical correlates of the clusters 

The main discriminating clinical parameters identifying each of the biomarker clusters were 

(1) age; (2) diabetes and chronic kidney disease (CKD); and (3) smoking/COPD, and ischemic 

aetiology. 

Age: Mean age was only 74 years in cluster 3, compared with 79-80 years in the other 

clusters. This was associated with lower co-morbidity burden in cluster 3 patients, except for obesity 

where there was significantly greater BSA and a trend towards higher BMI compared to other 

clusters. Obokata et al. describes the obese HFpEF phenotype which is characterised by increased 

concentric left ventricular remodelling, greater LV filling pressures and increased plasma volume 

despite lower NT-proBNP levels compared to non-obese HFpEF patients (15). A prospective study 

from 11 Asian regions sought to identify differences between „young‟ (<65 years) and „elderly‟ (≥ 75 

years) HFpEF patients. This study found that younger age HFpEF was associated with a male 

majority, higher prevalence of obesity and lower NT-proBNP levels, while left ventricular filling 

pressures and left ventricular hypertrophy were comparative with the elderly HFpEF patients (10). 

Similar results were observed in 3 large HFpEF trials (TOPCAT [Aldosterone Antagonist Therapy for 

Adults With Heart Failure and Preserved Systolic Function], I-PRESERVE [Irbesartan in Heart 

Failure With Preserved Systolic Function], and CHARM Preserved [Candesartan Cilexetil in Heart 

Failure Assessment of Reduction in Mortality and Morbidity]), where younger patients with HFpEF 

were more often obese men, whereas older patients with HFpEF were more often women with a 

higher prevalence of atrial fibrillation, hypertension, and CKD (16). Of note, Tromp et al. also found a 

separate „elderly/AF HFpEF‟ cluster (17), similar to cluster 2 in the present study; while Shah et al. 

identified a distinct elderly pheno-group with highest serum creatinine/ lowest GFR, and highest 

natriuretic peptides and MAGGIC risk score values, thus resembling a combination of clusters 1 and 2 

in the current study (5).  

Diabetes and CKD: Patients in cluster 1 had a substantially higher prevalence of diabetes than 

cluster 2,3, and 4. Similarly, Tromp et al. identified a „lean diabetic HFpEF‟ cluster with a high 

prevalence of diabetes and CKD while clustering on comorbidities in a large unselected population of 
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Asian patients with HF (17). Shah et al. also identified a diabetes-predominant pheno-group among 3 

HFpEF clusters based on clinical characteristics, although in this US-based cohort the diabetic pheno-

group also had the highest prevalence of obesity and obstructive sleep apnea.(2) High prevalence of 

chronic kidney disease, observed in cluster 1 and to a lesser extent in cluster 2, have often been 

observed in HFpEF populations and represent a high risk phenotype with a poor prognosis (6–9,18). 

A prospective analysis by Unger et al. in HFpEF patients found that CKD was independently 

associated with several echocardiographic parameters, including left atrial (LA) reservoir strain and 

LV longitudinal strain, after adjusting for potential cofounders (18). Development of cardiac 

abnormalities prior to onset of clinical symptoms in patients with renal dysfunction underpins the 

hypothesis that the pathogenesis of CKD HFpEF subgroups, such as that identified by cluster 1, may 

lie with renal dysfunction and its downstream effects.   

Smoking/ COPD and ischemic aetiology: Cluster 4 was predominantly characterized by a 

high prevalence of COPD (>40%), double that of the other “high-risk” cluster 1 (<20%), associated 

with smoking history, ischemic aetiology in >70% and highest troponin and NT-proBNP levels. 

Previous studies have not previously described subgroups of HFpEF patients with pulmonary disease. 

However, several studies have reported a close association between COPD and HFpEF. The 

Framingham Heart Study reported that several subclinical noncardiac organ dysfunctions were 

associated with increased risk of HF. In particular, ratio of forced expiratory volume in 1 second to 

forced vital capacity (FEV1:FVC ratio) was associated with incident HFpEF (19). The importance of 

the link with smoking history lies in the potential to modify the risk of both COPD and ischemic heart 

disease by smoking cessation. Indeed, current or prior smoking was associated with higher prevalence 

of coronary microvascular dysfunction among patients with HFpEF in the PROMIS-HFpEF (20). 

Both micro- and macro- vascular coronary artery disease may contribute to myocardial ischemia and 

worsening HFpEF (21). Importantly, revascularization in those with macrovascular coronary artery 

disease may be associated with preservation of cardiac function and improved outcomes in HFpEF 

(21). 
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Echocardiographic findings  

Echocardiography was performed in all patients. We found remarkable similarities in cardiac 

phenotype between the clusters. Left ventricular size and function and left atrial dimensions were 

similar between the clusters. The only discriminating parameter was right ventricular systolic 

pressure, which was significantly lower in cluster 3, consistent with less severe symptoms and better 

outcomes in these patients.  

Up- and down-regulated biological pathways 

Pathways identified by upregulated biomarkers in cluster 1 were related to cells of both innate 

and adaptive immunity. Natural killer (NK) cells are important in repairing tissue damage and appear 

to be preventative against development of fibrosis (22). Chronic decreases in NK cells has been 

reported to be correlated with low-grade inflammation in the heart (14). In addition, the T cell-

mediated immune response is implicated in cardiac remodelling and the progression of heart failure 

(23,24). In mice with cardiac hypertrophy, depletion of T cells led to reduced myocardial fibrosis and 

decrease infiltration of macrophages (24). In a previous cluster analysis Cohen et al. identified a 

CKD/DM phenogroup in HFpEF, which also exhibited biomarkers for tumour necrosis factor alpha 

mediated inflammation (9).  

Differential expression analysis of cluster 2 did not result in any up- or down-regulated 

biomarkers relative to the other clusters at a fold-change of 0.8. Considering the overlap in clinical 

phenotype of cluster 1 and 2, we postulate that this may have overshadowed any differential 

expression of biomarkers in cluster 2. 

Several significant pathways identified in cluster 4 were related to phosphoinositide 3-kinases 

(PI3K) and their downstream effects. These effects include signalling pathways involved in protein 

synthesis, cell proliferation, metabolism and cell survival and has been implicated in the pathogenesis 

of various diseases (25,26). Interestingly, increased PI3K/AKT axis activity is postulated to play an 

important role in cell senescence, which is considered as a key mechanism in COPD pathogenesis 
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(27). A study observed that increased PI3K/AKT axis activity was found in lung tissue and peripheral 

blood mononuclear cells of COPD patients when compared to controls (28). PI3K isoforms are found 

in both cardiomyocytes and leukocytes and have been implemented in pathways influencing 

hypertrophy, contractility, vascular and myocardial inflammation (29). In addition, AKT effects on 

monocytes/macrophages are postulated to have an effect on atherosclerosis formulation, with 

increased AKT signalling postulated to accelerate atherosclerosis (26). We postulate that increased 

PI3K/AKT axis in airway obstruction could have adverse effects on the heart and endothelium, 

leading to the development of heart failure. 

 

Strengths and limitations  

The strengths of this study are the use of large panel of biomarkers from several biological 

domains. This is especially important for HFpEF for which it is postulated to be a disease highly 

influenced by cardiac and non-cardiac comorbidities. In addition, by clustering on biomarkers rather 

on clinical variables, this allows for the identification of potential biological phenotypes that may 

represent underlying biological heterogeneity in HFpEF and in turn different pathophysiological 

mechanisms. We acknowledge there are several limitations to this study including the small number 

of patients and the lack of external validation. BIOSTAT is also primarily a Caucasian cohort and the 

extent to which the results of this study represent the general HFpEF population is unclear. Despite a 

lack of external validation, there does appear to be overlap between the results of cluster analyses and 

subgroups previously identified in other studies, suggesting that there is commonality across different 

methods and cohorts. We aim to validate our findings in further studies.  

Conclusion:  

Using unsupervised cluster analysis based on a broad range of circulating biomarkers, we 

identified four distinct clusters of HFpEF with remarkable differences in clinical characteristics and 

outcomes, potentially reflecting differences in underlying pathophysiology.  Cluster 1 patients can be 

identified as those with diabetic nephropathy, high event rates and a specific activation of 

inflammatory pathways; cluster 2 are the elderly patients with frequent age-related comorbidities; 
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cluster 3 are young with low burden of comorbidities except obesity, lowest NT-proBNP levels and 

lowest risk of adverse outcomes; and cluster 4 are those with ischemic aetiology, smoking and chronic 

lung disease, most symptoms, as well as highest NT-proBNP and troponin levels, characterized by 

increased activity of the PI3K/AKT pathway and with the highest risk of death and/or heart failure 

hospitalization.  Left ventricular and atrial size and function were not different among the groups. 

These data provide a pathophysiological basis on a proteomic level of clinical phenotypes of HFpEF 

observed in previous studies, and thus open the door to mechanism-based pathophysiologic 

interventions in specific HFpEF subgroups.   
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Figures and Tables:  

 

Figure 1. Heatmap displaying biomarkers across HFpEF clusters  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Baseline characteristics stratified by HFpEF cluster 

 Cluster 1 

 

Cluster 2 

 

Cluster 3 

 

Cluster 4 

 

p-value 

 

N 58 159 164 43  

Demographics 

Age (years) 79.0 

[73.0;82.0] 

80.0 

[72.5;86.5] 

74.0 

[66.8;81.0] 

79.0 

[71.5;83.0] 
<0.001 

Male (%) 35 (60.3%) 84 (52.8%) 93 (56.7%) 26 (60.5%) 0.689 

BMI (kg/m
2
) 29.1 

[24.8;33.2] 

28.4 

[24.2;34.2] 

30.4 

[25.4;34.7] 

29.4 

[25.4;33.4] 
 0.408  

BSA (m
2
) 1.97 

[1.80;2.11] 
1.85 

[1.68;2.01] 
2.02 

[1.79;2.21] 
2.01 

[1.79;2.13] 
 0.032  

Ischaemic 

aetiology (%) 

31 (54.4%) 

 

99 (65.1%) 

 

101 (66.4%) 

 

31 (72.1%) 

 

0.272 

 

Cardiomyopathy 

(%) 
4  

(7.02%) 

4 

 (2.63%) 

3  

(1.97%) 

1  

(2.33%) 

0.293 

NYHA, n (%)     <0.001 

I 0(0.0%) 0(0.0%) 4(2.44%) 0(0.0%)  
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II 15(25.9%) 37(23.3%) 72(43.9%) 8(18.6%)  

III 32(55.2%) 83(52.2%) 65(39.6%) 24(55.8%)  

IV 11(19.0%) 39(24.5%) 23(14.0%) 11(25.6%)  

Medical History (%) 

Anaemia 27(46.6%) 72(45.9%) 50(30.9%) 22(51.2%) 0.012 

Atrial 

fibrillation 
   31(54.4%)       74(46.5%)       67(41.1%)       24(55.8%)     0.185  

Diabetes    31(53.4%)       53(33.3%)       57(35.2%)       15(35.7%)     0.048  

COPD    11(19.0%)       44(27.7%)       36(22.1%)       18(41.9%)     0.034  

CKD    42(73.7%)      107(67.7%)       34(21.5%)       23(53.5%)    <0.001  

Hypertension    42(72.4%)      115(72.3%)      102(62.2%)       31(72.1%)     0.190  

Malignancy    6(10.5%)        5(3.14%)        6(3.66%)        2(4.65%)      0.141  

Obesity    25(43.9%)       69(43.7%)       86(53.8%)       19(44.2%)     0.270  

Stroke 13(22.4%) 31(19.5%) 30(18.4%) 9(21.4%) 0.913 

Past/current 

smokers 
   25(43.9%)       72(45.9%)       69(42.3%)       28(65.1%)     0.063  

Signs and symptoms  

Extent of 
peripheral oedema, 

n (%) 

    0.121 

Not present    7(13.0%)        46(31.7%)       54(37.0%)       9(22.5%)      

Ankle    22(40.7%)       52(35.9%)       42(28.8%)       15(37.5%)     

Below knee    18(33.3%)       34(23.4%)       40(27.4%)       12(30.0%)     

Above knee    7(13.0%)        13(8.97%)       10(6.85%)       4(10.0%)      

JVP elevated (%) 24(49.0%) 41(29.1%) 45(34.1%) 9(25.7%) 0.035 

Pulmonary 
congestion with 

rales  

36(64.3%) 

 

75(48.4%) 

 

70(45.2%) 

 

32(74.4%) 

 
0.001 

 

Laboratory  

Haemoglobin, 

(g/dl)  

12.2 

[11.2;13.5] 

12.5 

[10.9;13.5] 

13.3 

[12.3;14.4] 

12.5 

[10.8;13.8] 
<0.001  

Leukocytes, 

(10
9
/L) 

7.45 

[5.55;10.0] 

7.55 

[5.93;9.00] 

7.25 

[5.90;8.80] 

9.90 

[7.50;12.8] 
<0.001  

Creatinine, 

(μmol/L) 

 126 
[96.0;148]  

 112 
[88.0;142]  

81.5 
[66.8;94.2] 

96.0 
[79.0;121]  

<0.001  

Urea,  

(mmol/L) 

11.1 
[7.90;15.3] 

9.80 
[7.93;13.5] 

6.60 
[5.47;8.43] 

10.2 
[7.90;13.9] 

<0.001  

e-GFR, 

(mL/min/1.73m2) 

46.0 

[36.0;59.5] 

51.0 

[38.0;60.0] 

60.0 

[60.0;60.0] 

58.0 

[48.0;60.0] 
<0.001  

Gamma-GT, 

(U/L) 

61.0 

[39.5;138]  

44.0 

[27.0;80.0] 

35.0 

[25.0;62.0] 

47.0 

[32.0;94.8] 
 0.001  

Glucose, (mmol/L) 7.90 

[5.60;10.6] 

6.60 

[5.60;9.10] 

6.05 

[5.10;8.40] 

7.80 

[6.00;10.2] 
 0.002  
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Iron, (micromol/L) 8.00 

[6.00;12.0] 

9.00 

[6.00;13.0] 

13.0 

[8.00;16.0] 

8.00 

[4.25;11.8] 
<0.001  

Ferritin, (ng/mL)  154 
[58.0;270]  

93.0 
[43.0;209]  

94.5 
[35.5;202]  

98.0 
[52.0;262]  

 0.162  

NT-proBNP, 

(pg/L) 

1720 

[544;4831]  

1304 

[526;2938]  

 591 

[234;1621]  

2175 

[898;4542]  
<0.001  

GDF-15, (pg/mL) 5877 

[3412;8555] 

3510 

[2507;5228] 

2174 

[1532;2982] 

3777 

[2815;5970] 
<0.001  

Troponin T (ng/l) 45.0 
[26.9;79.6] 

32.6 
[18.9;63.1] 

19.0 
[12.4;31.3] 

46.2 
[30.4;271]  

<0.001  

 

Table 2. Echocardiography stratified by cluster 

 

 Cluster 1 

 

Cluster 2 

 

Cluster 3 

 

Cluster 4 

 

p-value 

 

N 58 159 164 43  

LVEF (%) 54.0 

[50.0;60.0] 

55.0 

[50.0;60.0] 

54.5 

[50.0;60.0] 

55.0 

[50.0;60.0] 
 0.953  

LVEDD (mm)   46.2(6.52)      47.9(6.96)      48.6(7.71)      48.5(7.25)     0.359  

LVESD (mm) 30.0 

[26.0;33.5] 

31.0 

[24.0;37.0] 

33.0 

[26.0;37.5] 

30.0 

[24.5;38.5] 
 0.844  

IVSd (mm) 13.0 
[12.0;15.0] 

13.0 
[11.8;15.0] 

13.0 
[10.0;15.0] 

13.0 
[12.8;15.0] 

 0.502  

PWd (mm) 12.0 

[11.0;13.0] 

11.0 

[9.00;14.0] 

10.0 

[9.00;13.0] 

12.0 

[10.0;13.0] 
 0.477  

Left atrial diameter 

(mm) 

  43.9(6.30)      45.0(7.15)      43.2(7.27)      44.6(6.87)     0.318  

E/A ratio 0.80 

[0.70;1.10] 

1.00 

[0.70;1.40] 

0.90 

[0.70;1.20] 

0.90 

[0.80;1.10] 
 0.671  

IVC dilated    10(17.2%)       26(16.4%)       26(15.9%)       5(11.6%)      0.876  

Right atrial 

pressure (mmHg) 

10.0 

[7.25;17.2] 

10.0 

[7.00;13.0] 

9.00 

[7.00;10.0] 

9.00 

[8.00;10.0] 
 0.440  

RVSP (mmHg) 49.0 

[39.0;63.5] 

43.0 

[35.0;55.0] 

37.0 

[30.0;49.0] 

47.0 

[37.0;52.0] 
 0.004  

Right ventricular 

diameter ≥ 44mm 

   11(21.6%)       26(20.5%)       27(19.4%)       8(22.2%)      0.978  

Tricuspid 
regurgitation 

gradient 

36.0 
[28.0;50.0] 

34.0 
[27.0;42.5] 

29.0 
[24.0;38.0] 

40.0 
[32.0;45.5] 

 0.004  

LVEDD = left ventricular end diastolic dimension; LVESD = left ventricular end systolic 

dimension;  

IVSd = septal wall thickness; PWd = posterior wall thickness ; ICV = ; RVSP = right ventricular 

systolic pressure.  
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Figure 2. Kaplan-Meier curves for A) heart failure hospitalisation and B) combined outcome of 

all-cause mortality and /or heart failure hospitalisation at 24 months stratified according to 

clusters.   
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Figure 3. Differentially expressed proteins relative to other HFpEF clusters. A) Cluster 1 vs. 

Clusters 2-4, B) Cluster 2 vs Clusters 1,3 and 4, C) Cluster 3 vs Clusters 1,2 and 4 and D) 

Cluster 4 vs Clusters 1-3.   
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Figure 4. Take-home figure  
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