CBS 2019
CBSMD教育中心
中 文

推荐文献

Abstract

Recommended Article

Utilization and programming of an automatic MRI recognition feature for cardiac rhythm management devices Residual Inflammatory Risk in Patients With Low LDL Cholesterol Levels Undergoing Percutaneous Coronary Intervention Timing and Causes of Unplanned Readmissions After Percutaneous Coronary Intervention: Insights From the Nationwide Readmission Database Cholesterol-Lowering Agents Randomized Comparison of Everolimus- and Zotarolimus-Eluting Coronary Stents With Biolimus-Eluting Stents in All-Comer Patients Society of cardiac angiography and interventions: suggested management of the no-reflow phenomenon in the cardiac catheterization laboratory Post-Stroke Cardiovascular Complications and Neurogenic Cardiac Injury: JACC State-of-the-Art Review Catheterization Laboratory Considerations During the Coronavirus (COVID-19) Pandemic: From the ACC’s Interventional Council and SCAI

Original ResearchJanuary 2020 Vol 13, Issue 1

JOURNAL:Circ Cardiovasc Interv. Article Link

Routine Continuous Electrocardiographic Monitoring Following Percutaneous Coronary Interventions

MA Al-Hijji , R Gulati,M Singh et al. Keywords: routine electrocardiographic monitoring post PCI; arrhythmia

ABSTRACT


BACKGROUND - The clinical utility of routine electrocardiographic monitoring following percutaneous coronary interventions (PCI) is not well studied.

 

METHODS - We prospectively evaluated the incidence, cost, and the clinical implications of actionable arrhythmia alarms on telemetry monitoring following PCI. One thousand three hundred fifty-eight PCI procedures (989 [72.8%] for acute coronary syndrome and 369 [27.2%] for stable angina) on patients admitted to nonintensive care unit were identified and divided into 2 groups; group 1, patients with actionable alarms (AA) and group 2, patients with non-AA. AA included (1) ≥3 s electrical pause or asystole; (2) high-grade Mobitz type II atrioventricular block or complete heart block; (3) ventricular fibrillation; (4) ventricular tachycardia (>15 beats); (5) atrial fibrillation with rapid ventricular response; (6) supraventricular tachycardia (>15 beats). Primary outcomes were 30-day all-cause mortality. Cost-savings analysis was performed.

 

RESULTS - Incidence of AA was 2.2% (37/1672). Time from end of procedure to AA was 5.5 (0.5, 24.5) hours. Patients with AA were older, presented with acute congestive heart failure or non–ST-segment–elevation myocardial infarction, and had multivessel or left main disease. The 30-day all-cause mortality was significantly higher in patients with AA (6.5% versus 0.3% in non-AA [P<0.001]). Applying the standardized costing approach and tailored monitoring per the American Heart Association guidelines lead to potential cost savings of $622 480.95 for the entire population.

 

CONCLUSIONS - AA following PCI were infrequent but were associated with increase in 30-day mortality. Following American Heart Association guidelines for monitoring after PCI can lead to substantial cost saving.