CBS 2019
CBSMD教育中心
中 文

Optical Coherence Tomography

Abstract

Recommended Article

Myocardial Blood Flow and Coronary Flow Reserve During 3 Years Following Bioresorbable Vascular Scaffold Versus Metallic Drug-Eluting Stent Implantation: The VANISH Trial Nonculprit Plaque Characteristics in Patients With Acute Coronary Syndrome Caused by Plaque Erosion vs Plaque Rupture: A 3-Vessel Optical Coherence Tomography Study Optical coherence tomography-guided percutaneous coronary intervention in ST-segmentelevation myocardial infarction: a prospective propensity-matched cohort of the thrombectomy versus percutaneous coronary intervention alone trial Japan-United States of America Harmonized Assessment by Randomized Multicentre Study of OrbusNEich's Combo StEnt (Japan-USA HARMONEE) study: primary results of the pivotal registration study of combined endothelial progenitor cell capture and drug-eluting stent in patients with ischaemic coronary disease and non-ST-elevation acute coronary syndrome Optical coherence tomography versus intravascular ultrasound to evaluate coronary artery disease and percutaneous coronary intervention OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study Intravascular optical coherence tomography The Relation Between Optical Coherence Tomography-Detected Layered Pattern and Acute Side Branch Occlusion After Provisional Stenting of Coronary Bifurcation Lesions

Review Article2018 Jan;33(1):1-10.

JOURNAL:Cardiovasc Interv Ther. Article Link

Current clinical applications of coronary optical coherence tomography

Kume T, Uemura S. Keywords: Coronary intervention; Imaging; Optical coherence tomography; Thrombus; Vulnerable plaque

ABSTRACT


Optical coherence tomography (OCT) is an intra-coronary diagnostic technique that provides detailed imagings of blood vessels in the current cardiac catheterization laboratory. The higher resolution of OCT often provides superior delineation of each structure compared with intravascular ultrasound (IVUS), and it can reliably visualize the microstructure of normal and diseased arteries. The capabilities of OCT are well suited for the identification of calcified plaque and neointima formation after stent implantation. It has been reported that OCT-guided percutaneous coronary intervention (PCI) resulted in equivalent clinical and angiographic outcomes in comparison with IVUS-guided PCI. Recently, the three-dimensional reconstruction of OCT and a real-time point-to-point correspondence between coronary angiographic and OCT/OFDI images have been developed and provide useful information to PCI operators. The unique capabilities of OCT as an investigational tool for high-risk lesions will serve the cardiology community well, as it moves us toward a better understanding of atherosclerotic plaque. In addition, because of the development of new OCT technology, OCT has become a notable catheter-based imaging technology that can provide practical guidance for PCI in clinical settings.