CBS 2019
CBSMD教育中心
中 文

Optical Coherence Tomography

Abstract

Recommended Article

Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation OCT guidance during stent implantation in primary PCI: A randomized multicenter study with nine months of optical coherence tomography follow-up Optical Coherence Tomography–Defined Plaque Vulnerability in Relation to Functional Stenosis Severity and Microvascular Dysfunction Serial changes in the side-branch ostial area after main-vessel stenting with kissing balloon inflation for coronary bifurcation lesions, assessed by 3D optical coherence tomography Optical Coherence Tomography-Guided Percutaneous Coronary Intervention in ST-Segment-Elevation Myocardial Infarction: A Prospective Propensity-Matched Cohort of the Thrombectomy Versus Percutaneous Coronary Intervention Alone Trial Novel 3-Dimensional Vessel and Scaffold Reconstruction Methodology for the Assessment of Strut-Level Wall Shear Stress After Deployment of Bioresorbable Vascular Scaffolds From the ABSORB III Imaging Substudy Optical coherence tomography predictors of target vessel myocardial infarction after provisional stenting in patients with coronary bifurcation disease Treatment of calcified coronary lesions with Palmaz-Schatz stents. An intravascular ultrasound study

Clinical Trial2009 Jun;30(11):1348-55.

JOURNAL:Eur Heart J. Article Link

Lipid-rich plaque and myocardial perfusion after successful stenting in patients with non-ST-segment elevation acute coronary syndrome: an optical coherence tomography study

Tanaka A, Imanishi T, Kitabata H et al. Keywords: microcirculation; reperfusion; plaque; angioplasty; OCT

ABSTRACT

AIMSAlthough some recent guidelines recommend an early invasive strategy for non-ST-segment elevation acute coronary syndrome (NSTEACS), several studies have failed to identify any benefit for very early intervention for NSTEACS. The no-reflow phenomenon may inhibit the expected benefit from very early recanalization for NSTEACS subjects. The aim of this study was to investigate whether optical coherence tomography (OCT) could predict no-reflow in patients with NSTEACS.

METHODS AND RESULTS - This study comprised 83 consecutive patients with NSTEACS who underwent OCT and successful emergent primary stenting. On the basis of post-stent TIMI flow, patients were divided into two groups: no-reflow group (n = 14) and reflow group (n = 69). Thin-cap fibroatheroma (TCFA) was defined as a plaque presenting lipid content for >90 degrees , and with thinnest part of the fibrous cap measuring <70 microm. Thin-cap fibroatheroma were more frequently observed in the no-reflow group than in the reflow group (50% vs. 16%, P = 0.005). The frequency of the no-reflow phenomenon increases according to the size of the lipid arc in the culprit plaque. Final TIMI blush grade also deteriorated according to the increase in the lipid arc. A multivariable logistic regression model revealed that lipid arc alone was an independent predictor of no-reflow (odds ratio 1.018; CI 1.004-1.033; P = 0.01).

CONCLUSION - Optical coherence tomography can predict no-reflow after percutaneous coronary intervention (PCI) in NSTEACS. The lipid contents of a culprit plaque may play a key role in damage to the microcirculation after PCI for NSTEACS. From our results, it is found that OCT is useful tool for stratifying risk for PCI for NSTEACS.