CBS 2019
CBSMD教育中心
中 文

Optical Coherence Tomography

Abstract

Recommended Article

Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation OCT guidance during stent implantation in primary PCI: A randomized multicenter study with nine months of optical coherence tomography follow-up Optical Coherence Tomography–Defined Plaque Vulnerability in Relation to Functional Stenosis Severity and Microvascular Dysfunction Serial changes in the side-branch ostial area after main-vessel stenting with kissing balloon inflation for coronary bifurcation lesions, assessed by 3D optical coherence tomography Optical Coherence Tomography-Guided Percutaneous Coronary Intervention in ST-Segment-Elevation Myocardial Infarction: A Prospective Propensity-Matched Cohort of the Thrombectomy Versus Percutaneous Coronary Intervention Alone Trial Novel 3-Dimensional Vessel and Scaffold Reconstruction Methodology for the Assessment of Strut-Level Wall Shear Stress After Deployment of Bioresorbable Vascular Scaffolds From the ABSORB III Imaging Substudy Treatment of calcified coronary lesions with Palmaz-Schatz stents. An intravascular ultrasound study Optical coherence tomography predictors of target vessel myocardial infarction after provisional stenting in patients with coronary bifurcation disease

Original Research2017 May 15;119(10):1512-1517.

JOURNAL:Am J Cardiol. Article Link

Comparison of Coronary Intimal Plaques by Optical Coherence Tomography in Arteries With Versus Without Internal Running Vasa Vasorum

Amano H, Koizumi M, Okubo R et al. Keywords: OCT; internal running vasa vasorum; plaque vulnerability; blood flow

ABSTRACT


It has been reported that the internal running vasa vasorum (VV) was associated with plaque vulnerability, and microchannels in optical coherence tomography (OCT) are consistent pathologically with VV. We investigated plaque vulnerability and incidence of slow flow during percutaneous coronary intervention of the internal longitudinal running VV. Subjects were 71 lesions that underwent OCT before percutaneous coronary intervention. Internal running VV was defined as intraplaque neovessels running from the adventitia to plaque. Lesions with internal running VV were found in 47% (33 of 71). Compared with lesions without internal running VV, lesions with internal running VV showed significantly higher incidence of intimal laceration (64% [21 of 33] vs 16% [6 of 38], p <0.001), lipid-rich plaque (79% [26 of 33] vs 26% [10 of 38], p <0.001), plaque rupture (52% [17 of 33] vs 13% [5 of 38], p <0.001), thin-cap fibroatheroma (58% [19 of 33] vs 11% [4 of 38], p <0.001), macrophage accumulation (61% [20 of 33] vs 26% [10 of 38], p = 0.004), intraluminal thrombus (36% [12 of 33] vs 3% [1 of 38], p <0.001), and slow flow after stent implantation (42% [14 of 33] vs 13% [5 of 38], p = 0.007). The multivariable analysis showed that internal running VV was an independent predictor of slow flow after stent implantation (odds ratio 4.23, 95% confidence interval 1.05 to 17.01, p = 0.042). In conclusion, compared with those without, plaques with internal running VV in OCT had high plaque vulnerability with more intimal laceration, lipid-rich plaque, plaque rupture, thin-cap fibroatheroma, macrophage accumulation, and intraluminal thrombus, and they had high incidence of slow flow after stent implantation.