CBS 2019
CBSMD教育中心
中 文

急性冠脉综合征

Abstract

Recommended Article

Positive remodelling of coronary arteries on computed tomography coronary angiogram: an observational study Aggressive lipid-lowering therapy after percutaneous coronary intervention – for whom and how? Short Duration of DAPT Versus De-Escalation After Percutaneous Coronary Intervention for Acute Coronary Syndromes Association of Plaque Location and Vessel Geometry Determined by Coronary Computed Tomographic Angiography With Future Acute Coronary Syndrome–Causing Culprit Lesions 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines Late Survival Benefit of Percutaneous Coronary Intervention Compared With Medical Therapy in Patients With Coronary Chronic Total Occlusion: A 10-Year Follow-Up Study Canadian Multicenter Chronic Total Occlusion Registry: Ten-Year Follow-Up Results of Chronic Total Occlusion Revascularization Global Chronic Total Occlusion Crossing Algorithm: JACC State-of-the-Art Review

Clinical Trial2017 Oct 17;136(16):1495-1508.

JOURNAL:Circulation. Article Link

Direct comparison of cardiac myosin-binding protein C with cardiac troponins for the early diagnosis of acute myocardial infarction

Kaier TE, Twerenbold R, Marber M et al. Keywords: cMyC; cardiac myosin-binding protein C; myocardial infarction, APACE; troponin I; troponin T

ABSTRACT


BACKGROUNDCardiac myosin-binding protein C (cMyC) is a cardiac-restricted protein that is more abundant than cardiac troponins (cTn) and is released more rapidly after acute myocardial infarction (AMI). We evaluated cMyC as an adjunct or alternative to cTn in the early diagnosis of AMI.


METHODSUnselected patients (N=1954) presenting to the emergency department with symptoms suggestive of AMI, concentrations of cMyC, and high-sensitivity (hs) and standard-sensitivity cTn were measured at presentation. The final diagnosis of AMI was independently adjudicated using all available clinical and biochemical information without knowledge of cMyC. The prognostic end point was long-term mortality.

RESULTSFinal diagnosis was AMI in 340 patients (17%). Concentrations of cMyC at presentation were significantly higher in those with versus without AMI (median, 237 ng/L versus 13 ng/L, P<0.001). Discriminatory power for AMI, as quantified by the area under the receiver-operating characteristic curve (AUC), was comparable for cMyC (AUC, 0.924), hs-cTnT (AUC, 0.927), and hs-cTnI (AUC, 0.922) and superior to cTnI measured by a contemporary sensitivity assay (AUC, 0.909). The combination of cMyC with hs-cTnT or standard-sensitivity cTnI (but not hs-cTnI) led to an increase in AUC to 0.931 (P<0.0001) and 0.926 (P=0.003), respectively. Use of cMyC more accurately classified patients with a single blood test into rule-out or rule-in categories: Net Reclassification Improvement +0.149 versus hs-cTnT, +0.235 versus hs-cTnI (P<0.001). In early presenters (chest pain <3 h), the improvement in rule-in/rule-out classification with cMyC was larger compared with hs-cTnT (Net Reclassification Improvement +0.256) and hs-cTnI (Net Reclassification Improvement +0.308; both P<0.001). Comparing the C statistics, cMyC was superior to hs-cTnI and standard sensitivity cTnI (P<0.05 for both) and similar to hs-cTnT at predicting death at 3 years.

CONCLUSIONScMyC at presentation provides discriminatory power comparable to hs-cTnT and hs-cTnI in the diagnosis of AMI and may perform favorably in patients presenting early after symptom onset.

CLINICAL TRIAL REGISTRATIONURL: https://www.clinicaltrials.gov. Unique identifier: NCT00470587.

© 2017 The Authors.