CBS 2019
CBSMD教育中心
中 文

光学相关断层扫描

Abstract

Recommended Article

Histopathological validation of optical coherence tomography findings of the coronary arteries Nonculprit Lesion Plaque Morphology in Patients With ST-Segment–Elevation Myocardial Infarction: Results From the COMPLETE Trial Optical Coherence Tomography Substudys Neoatherosclerosis in Patients With Coronary Stent Thrombosis: Findings From Optical Coherence Tomography Imaging (A Report of the PRESTIGE Consortium) Impact of low tissue backscattering by optical coherence tomography on endothelial function after drug-eluting stent implantation Coronary Artery Intraplaque Microvessels by Optical Coherence Tomography Correlate With Vulnerable Plaque and Predict Clinical Outcomes in Patients With Ischemic Angina Spontaneous Coronary Artery Dissection: Pathophysiological Insights From Optical Coherence Tomography Angiography Alone Versus Angiography Plus Optical Coherence Tomography to Guide Percutaneous Coronary Intervention: Outcomes From the Pan-London PCI Cohort Changes in Coronary Plaque Composition in Patients With Acute Myocardial Infarction Treated With High-Intensity Statin Therapy (IBIS-4): A Serial Optical Coherence Tomography Study

Review Article2018 May 21;20(7):33.

JOURNAL:Curr Atheroscler Rep. Article Link

A Survey on Coronary Atherosclerotic Plaque Tissue Characterization in Intravascular Optical Coherence Tomography

Boi A, Jamthikar AD, Suri JS et al. Keywords: Atherosclerosis; Cardiovascular disease; Coronary; Machine learning and deep learning; Optical coherence tomography; Plaque characterization; Risk stratification

ABSTRACT


PURPOSE OF REVIEW - Atherosclerotic plaque deposition within the coronary vessel wall leads to arterial stenosis and severe catastrophic events over time. Identification of these atherosclerotic plaque components is essential to pre-estimate the risk of cardiovascular disease (CVD) and stratify them as a high or low risk. The characterization and quantification of coronary plaque components are not only vital but also a challenging task which can be possible using high-resolution imaging techniques.


RECENT FINDING - Atherosclerotic plaque components such as thin cap fibroatheroma (TCFA), fibrous cap, macrophage infiltration, large necrotic core, and thrombus are the microstructural plaque components that can be detected with only high-resolution imaging modalities such as intravascular ultrasound (IVUS) and optical coherence tomography (OCT). Light-based OCT provides better visualization of plaque tissue layers of coronary vessel walls as compared to IVUS. Three dominant paradigms have been identified to characterize atherosclerotic plaque components based on optical attenuation coefficients, machine learning algorithms, and deep learning techniques. This review (condensation of 126 papers after downloading 150 articles) presents a detailed comparison among various methodologies utilized for plaque tissue characterization, classification, and arterial measurements in OCT. Furthermore, this review presents the different ways to predict and stratify the risk associated with the CVD based on plaque characterization and measurements in OCT. Moreover, this review discovers three different paradigms for plaque characterization and their pros and cons. Among all of the techniques, a combination of machine learning and deep learning techniques is a best possible solution that provides improved OCT-based risk stratification.