CBS 2019
CBSMD教育中心
中 文

光学相关断层扫描

Abstract

Recommended Article

Randomized comparison of stent strut coverage following angiography- or optical coherence tomography-guided percutaneous coronary intervention Vascular response and healing profile of everolimus-eluting bioresorbable vascular scaffolds for percutaneous treatment of chronic total coronary occlusions: A one-year optical coherence tomography analysis from the GHOST-CTO registry Clinical Predictors for Lack of Favorable Vascular Response to Statin Therapy in Patients With Coronary Artery Disease: A Serial Optical Coherence Tomography Study Optical coherence tomography versus intravascular ultrasound to evaluate coronary artery disease and percutaneous coronary intervention Assessment of the coronary calcification by optical coherence tomography Covering our tracks – optical coherence tomography to assess vascular healing A Survey on Coronary Atherosclerotic Plaque Tissue Characterization in Intravascular Optical Coherence Tomography Intravascular optical coherence tomography

Original Research2018 Aug 2.[Epub ahead of print]

JOURNAL:Cardiovasc Interv Ther. Article Link

Impact of low tissue backscattering by optical coherence tomography on endothelial function after drug-eluting stent implantation

Tamaru H, Fujii K, Nakata T et al. Keywords: OCT; vascular healing; DES; endothelial function

ABSTRACT


This study evaluated the impact of optical coherence tomography (OCT)-derived low-backscattered tissue on mid-term coronary endothelial function after drug-eluting stent (DES) implantation. Although OCT enables detailed in vivo evaluation of neointimal tissue characterization after DES implantation, its association with physiological vascula rhealing response is unclear. Thirty-three stable angina pectoris patients underwent OCT examination and endothelial function testing with intracoronary infusion of incremental doses of acetylcholine 8-month after DES implantation in a single lesion of the left anterior descending artery. Neointimal tissue was classified into two patterns based on the predominant OCT light backscatter: high backscatter and low backscatter. Although the presence of uncovered or malapposed stent strut was not associated with the degree of vasoconstriction, the degree of vasoconstriction was significantly greater in the DES with low-backscattered neointima than in the DES without low-backscattered neointima (- 32.1 ± 25.7 vs. - 4.1 ± 20.1%, p = 0.003). Moreover, there was an inverse linear relationship between low backscatter tissue index and degree of vasoconstriction after acetylcholine infusion (r = 0.50 and p = 0.003). The endothelium-dependent vasomotor response after 8-month of DES was impaired in patients with low neointimal tissue backscatter on OCT imaging. OCT assessment of low-backscattered tissue may be used as surrogate markers for impairment of endothelial function after DES.