CBS 2019
CBSMD教育中心
中 文

光学相关断层扫描

Abstract

Recommended Article

Histopathological validation of optical coherence tomography findings of the coronary arteries Nonculprit Lesion Plaque Morphology in Patients With ST-Segment–Elevation Myocardial Infarction: Results From the COMPLETE Trial Optical Coherence Tomography Substudys Neoatherosclerosis in Patients With Coronary Stent Thrombosis: Findings From Optical Coherence Tomography Imaging (A Report of the PRESTIGE Consortium) Coronary Artery Intraplaque Microvessels by Optical Coherence Tomography Correlate With Vulnerable Plaque and Predict Clinical Outcomes in Patients With Ischemic Angina Impact of low tissue backscattering by optical coherence tomography on endothelial function after drug-eluting stent implantation Spontaneous Coronary Artery Dissection: Pathophysiological Insights From Optical Coherence Tomography Angiography Alone Versus Angiography Plus Optical Coherence Tomography to Guide Percutaneous Coronary Intervention: Outcomes From the Pan-London PCI Cohort Comparison of Coronary Intimal Plaques by Optical Coherence Tomography in Arteries With Versus Without Internal Running Vasa Vasorum

Original Research2013;77(9):2334-40.

JOURNAL:Circ J. Article Link

Volumetric characterization of human coronary calcification by frequency-domain optical coherence tomography

Mehanna E, Bezerra HG, Prabhu D et al. Keywords: coronary artery calcification; Cryo-imaging; OCT; PCI

ABSTRACT


BACKGROUNDCoronary artery calcification (CAC) presents unique challenges for percutaneous coronary intervention. Calcium appears as a signal-poor region with well-defined borders by frequency-domain optical coherence tomography (FD-OCT). The objective of this study was to demonstrate the accuracy of intravascular FD-OCT to determine the distribution of CAC.


METHODS AND RESULTS - Cadaveric coronary arteries were imaged using FD-OCT at 100-μm frame interval. Arteries were subsequently frozen, sectioned and imaged at 20-μm intervals using the Case Cryo-Imaging automated system(TM). Full volumetric co-registration between FD-OCT and cryo-imaging was performed. Calcium area, calcium-lumen distance (depth) and calcium angle were traced on every cross-section; volumetric quantification was performed offline. In total, 30 left anterior descending arteries were imaged: 13 vessels had a total of 55 plaques with calcification by cryo-imaging; FD-OCT identified 47 (85%) of these plaques. A total of 1,285 cryo-images were analyzed and compared with corresponding co-registered 257 FD-OCT images. Calcium distribution, represented by the mean depth and the mean calcium angle, was similar, with excellent correlation between FD-OCT and cryo-imaging respectively (mean depth: 0.25±0.09 vs. 0.26±0.12mm, P=0.742; R=0.90), (mean angle: 35.33±21.86° vs. 39.68±26.61°, P=0.207; R=0.90). Calcium volume was underestimated in large calcifications (3.11±2.14 vs. 4.58±3.39mm(3), P=0.001) in OCT vs. cryo respectively.

CONCLUSIONS - Intravascular FD-OCT can accurately characterize CAC distribution. OCT can quantify absolute calcium volume, but may underestimate calcium burden in large plaques with poorly defined abluminal borders.