CBS 2019
CBSMD教育中心
中 文

光学相关断层扫描

Abstract

Recommended Article

Randomized comparison of stent strut coverage following angiography- or optical coherence tomography-guided percutaneous coronary intervention Vascular response and healing profile of everolimus-eluting bioresorbable vascular scaffolds for percutaneous treatment of chronic total coronary occlusions: A one-year optical coherence tomography analysis from the GHOST-CTO registry Clinical Predictors for Lack of Favorable Vascular Response to Statin Therapy in Patients With Coronary Artery Disease: A Serial Optical Coherence Tomography Study Covering our tracks – optical coherence tomography to assess vascular healing Optical coherence tomography versus intravascular ultrasound to evaluate coronary artery disease and percutaneous coronary intervention Assessment of the coronary calcification by optical coherence tomography A Survey on Coronary Atherosclerotic Plaque Tissue Characterization in Intravascular Optical Coherence Tomography Intravascular optical coherence tomography

Original Research2018 Apr 6;13(18):e2182-e2189.

JOURNAL:EuroIntervention. Article Link

A new optical coherence tomography-based calcium scoring system to predict stent underexpansion

Fujino A, Mintz GS, Matsumura M et al. Keywords: calcified stenosis; OCT

ABSTRACT


AIMS - This was a retrospective study to develop and validate an optical coherence tomography (OCT)-based calcium scoring system to predict stent underexpansion.


METHODS AND RESULTS - A calcium score was developed using 128 patients with pre- and post-stent OCT (test cohort) and then validated in an external cohort of 133 patients. In the test cohort, a multivariable model showed that the independent predictors of stent expansion were maximum calcium angle per 180° (regression coefficient: -7.43; p<0.01), maximum calcium thickness per 0.5 mm (-3.40; p=0.02), and calcium length per 5 mm (-2.32; p=0.01). A calcium score was then defined as 2 points for maximum angle >180°, 1 point for maximum thickness >0.5 mm, and 1 point for length >5 mm. In the validation cohort, the lesions with calcium score of 0 to 3 had excellent stent expansion, whereas the lesions with a score of 4 had poor stent expansion (96% versus 78%, p<0.01). On multivariate analysis the calcium score was an independent predictor of stent underexpansion.

CONCLUSIONS - An OCT-based calcium scoring system can help to identify lesions that would benefit from plaque modification prior to stent implantation. Lesions with calcium deposit with maximum angle >180°, maximum thickness >0.5 mm, and length >5 mm may be at risk of stent underexpansion.