CBS 2019
CBSMD教育中心
中 文

光学相关断层扫描

Abstract

Recommended Article

Comparison of Coronary Intimal Plaques by Optical Coherence Tomography in Arteries With Versus Without Internal Running Vasa Vasorum Impact of an optical coherence tomography guided approach in acute coronary syndromes: A propensity matched analysis from the international FORMIDABLE-CARDIOGROUP IV and USZ registry The Relation Between Optical Coherence Tomography-Detected Layered Pattern and Acute Side Branch Occlusion After Provisional Stenting of Coronary Bifurcation Lesions Optical coherence tomography versus intravascular ultrasound to evaluate coronary artery disease and percutaneous coronary intervention Optical Coherence Tomography-Guided Percutaneous Coronary Intervention in ST-Segment-Elevation Myocardial Infarction: A Prospective Propensity-Matched Cohort of the Thrombectomy Versus Percutaneous Coronary Intervention Alone Trial Lipid-rich plaque and myocardial perfusion after successful stenting in patients with non-ST-segment elevation acute coronary syndrome: an optical coherence tomography study Optimal threshold of postintervention minimum stent area to predict in-stent restenosis in small coronary arteries: An optical coherence tomography analysis Coronary Atherosclerosis T1-Weighed Characterization With Integrated Anatomical Reference: Comparison With High-Risk Plaque Features Detected by Invasive Coronary Imaging

Original Research2017 May 15;119(10):1512-1517.

JOURNAL:Am J Cardiol. Article Link

Comparison of Coronary Intimal Plaques by Optical Coherence Tomography in Arteries With Versus Without Internal Running Vasa Vasorum

Amano H, Koizumi M, Okubo R et al. Keywords: OCT; internal running vasa vasorum; plaque vulnerability; blood flow

ABSTRACT


It has been reported that the internal running vasa vasorum (VV) was associated with plaque vulnerability, and microchannels in optical coherence tomography (OCT) are consistent pathologically with VV. We investigated plaque vulnerability and incidence of slow flow during percutaneous coronary intervention of the internal longitudinal running VV. Subjects were 71 lesions that underwent OCT before percutaneous coronary intervention. Internal running VV was defined as intraplaque neovessels running from the adventitia to plaque. Lesions with internal running VV were found in 47% (33 of 71). Compared with lesions without internal running VV, lesions with internal running VV showed significantly higher incidence of intimal laceration (64% [21 of 33] vs 16% [6 of 38], p <0.001), lipid-rich plaque (79% [26 of 33] vs 26% [10 of 38], p <0.001), plaque rupture (52% [17 of 33] vs 13% [5 of 38], p <0.001), thin-cap fibroatheroma (58% [19 of 33] vs 11% [4 of 38], p <0.001), macrophage accumulation (61% [20 of 33] vs 26% [10 of 38], p = 0.004), intraluminal thrombus (36% [12 of 33] vs 3% [1 of 38], p <0.001), and slow flow after stent implantation (42% [14 of 33] vs 13% [5 of 38], p = 0.007). The multivariable analysis showed that internal running VV was an independent predictor of slow flow after stent implantation (odds ratio 4.23, 95% confidence interval 1.05 to 17.01, p = 0.042). In conclusion, compared with those without, plaques with internal running VV in OCT had high plaque vulnerability with more intimal laceration, lipid-rich plaque, plaque rupture, thin-cap fibroatheroma, macrophage accumulation, and intraluminal thrombus, and they had high incidence of slow flow after stent implantation.