CBS 2019
CBSMD教育中心
中 文

血流储备分数

Abstract

Recommended Article

Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation New Volumetric Analysis Method for Stent Expansion and its Correlation With Final Fractional Flow Reserve and Clinical Outcome An ILUMIEN I Substudy Influence of Heart Rate on FFR Measurements: An Experimental and Clinical Validation Study Fractional Flow Reserve-Guided Complete Revascularization Improves the Prognosis in Patients With ST-Segment-Elevation Myocardial Infarction and Severe Nonculprit Disease: A DANAMI 3-PRIMULTI Substudy (Primary PCI in Patients With ST-Elevation Myocardial Infarction and Multivessel Disease: Treatment Real-world clinical utility and impact on clinical decision-making of coronary computed tomography angiography-derived fractional flow reserve: lessons from the ADVANCE Registry Relationship between fractional flow reserve value and the amount of subtended myocardium Physiologic Characteristics and Clinical Outcomes of Patients With Discordance Between FFR and iFR Prognostic Implication of Thermodilution Coronary Flow Reserve in Patients Undergoing Fractional Flow Reserve Measurement

Original Research2014 Sep 1;84(3):406-13.

JOURNAL:Catheter Cardiovasc Interv. Article Link

Impact of myocardial supply area on the transstenotic hemodynamics as determined by fractional flow reserve

Shiono Y1 Kubo T, Tanaka A et al. Keywords: coronary angiography; fractional flow reserve; ischemic heart disease

ABSTRACT


OBJECTIVESThe aim of this study was to investigate the impact of myocardial area supplied by the coronary artery on fractional flow reserve (FFR).


BACKGROUND - Various factors other than the degree of epicardial stenosis influence the physiological significance of a coronary artery stenosis.

METHODS - A total of 296 coronary lesions in 217 patients were analyzed by quantitative coronary angiography and FFR. Myocardial area supplied by the coronary artery distal to the stenosis was evaluated by angiography using a modified version of the Alberta Provincial Project for Outcome Assessment in Coronary Heart Disease (APPROACH) score.

RESULTS - Percent diameter stenosis of the coronary lesion was 57 ± 15% (mean ± standard deviation). FFR <0.80 was seen in 132 (45%) lesions. FFR was significantly correlated with minimum lumen diameter (r = 0.584, P <0.001), percent diameter stenosis (r = -0.565, P <0.001), lesion length (r = -0.306, P <0.001), and myocardial supply area (r = -0.504, P <0.001). Multivariate logistic analysis demonstrated that minimum lumen diameter (odds ratio [OR] = 0.031, 95% confidence interval [CI] = 0.013-0.076, P < 0.001), lesion length (OR = 1.038, 95% CI = 1.009-1.069, P = 0.001), and myocardial supply area (OR = 1.113, 95% CI = 1.079-1.147, P <0.001) were independent determinants for FFR <0.80.

CONCLUSIONS - FFR, which is the index of physiological significance of coronary artery stenosis, is influenced by myocardial supply area distal to the stenosis as well as by its own minimal lumen diameter and lesion length.

© 2013 Wiley Periodicals, Inc.