CBS 2019
CBSMD教育中心
中 文

血流储备分数

Abstract

Recommended Article

Coronary Microcirculation Downstream Non-Infarct-Related Arteries in the Subacute Phase of Myocardial Infarction: Implications for Physiology-Guided Revascularization Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation Utilization and Outcomes of Measuring Fractional Flow Reserve in Patients With Stable Ischemic Heart Disease Fractional flow reserve in clinical practice: from wire-based invasive measurement to image-based computation Diagnostic Performance of Angiogram-Derived Fractional Flow Reserve: A Pooled Analysis of 5 Prospective Cohort Studies Diagnostic accuracy of intracoronary optical coherence tomography-derived fractional flow reserve for assessment of coronary stenosis severity Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty Coronary Physiology in the Cardiac Catheterization Laboratory

Original ResearchVolume 72, Issue 18, October 2018

JOURNAL:JACC Article Link

Coronary CT Angiographic and Flow Reserve-Guided Management of Patients With Stable Ischemic Heart Disease

BL Nørgaard, CJ Terkelsen, ON Mathiassen et al. Keywords: computed tomography; angiography; coronary angiography; coronary artery disease; fractional flow reserve

ABSTRACT


BACKGROUND - Clinical outcomes following coronary computed tomographyderived fractional flow reserve (FFRCT) testing in clinical practice are unknown.


OBJECTIVES -  This study sought to assess real-world clinical outcomes following a diagnostic strategy including first-line coronary computed tomography angiography (CTA) with selective FFRCT testing.


METHODS -  The study reviewed the results of 3,674 consecutive patients with stable chest pain evaluated with CTA and FFRCT testing to guide downstream management in patients with intermediate stenosis (30% to 70%). The composite endpoint (all-cause death, myocardial infarction, hospitalization for unstable angina, and unplanned revascularization) was determined in 4 patient groups: 1) CTA stenosis <30%, optimal medical treatment (OMT), and no additional testing; 2) FFRCT >0.80, OMT, no additional testing; 3) FFRCT 0.80, OMT, no additional testing; and 4) FFRCT 0.80, OMT, and referral to invasive coronary angiography. Patients were followed for a median of 24 (range 8 to 41) months.


RESULTS - FFRCT was available in 677 patients, and the test result was negative (>0.80) in 410 (61%) patients. In 75% of the patients with FFRCT >0.80, maximum coronary stenosis was 50%. The cumulative incidence proportion (95% confidence interval [CI]) of the composite endpoint at the end of follow-up was comparable in groups 1 (2.8%; 95% CI: 1.4% to 4.9%) and 2 (3.9%; 95% CI: 2.0% to 6.9%) (p = 0.58) but was higher (when compared with group 1) in groups 3 (9.4%; p = 0.04) and 4 (6.6%; p = 0.08). Risk of myocardial infarction was lower in group 4 (1.3%) than in group 3 (8%; p < 0.001).


CONCLUSIONS -  In patients with intermediate-range coronary stenosis, FFRCT is effective in differentiating patients who do not require further diagnostic testing or intervention (FFRCT >0.80) from higher-risk patients (FFRCT 0.80) in whom further testing with invasive coronary angiography and possibly intervention may be needed. Further studies assessing the risk and optimal management strategy in patients undergoing first-line CTA with selective FFRCT testing are needed.