CBS 2019
CBSMD教育中心
中 文

Bifurcation Stenting

Abstract

Recommended Article

Percutaneous Coronary Intervention Techniques for Bifurcation Disease: Network Meta-analysis Reveals Superiority of Double-Kissing Crush One Versus 2-stent Strategy for the Treatment of Bifurcation Lesions in the Context of a Coronary Chronic Total Occlusion:A Multicenter Registry European Bifurcation Club White Paper on Stenting Techniques for Patients With Bifurcated Coronary Artery Lesions Developing a Mobile Application for Global Cardiovascular Education Feasibility and efficacy of the ultrashort side branch dedicated balloon in coronary bifurcation stenting Comparison of intravascular ultrasound-guided with angiography-guided double kissing crush stenting for patients with complex coronary bifurcation lesions: rationale and design of a prospective, randomized and multicenter DKCRUSH VIII trial Technical aspects of the culotte technique Tips of the dual-lumen microcatheter-facilitated reverse wire technique in percutaneous coronary interventions for markedly angulated bifurcated lesions

Original Research2019 Nov 12. pii: EIJ-D-19-00534.

JOURNAL:EuroIntervention. Article Link

Anatomical Attributes of Clinically Relevant Diagonal Branches in Patients with Left Anterior Descending Coronary Artery Bifurcation Lesions

Jeon WK, Park J, Koo BK et al. Keywords: left anterior descending coronary artery bifurcation lesions; clinical relevance; prediction models

ABSTRACT


AIMS - This study aimed to investigate the anatomical attributes determining myocardial territory of diagonal branches and to develop prediction models for clinically relevant branches using myocardial perfusion imaging (MPI) and coronary CT angiography (CCTA).


METHODS AND RESULTS - The amount of ischemia and subtended myocardial mass of diagonal branches were quantified using MPI by percent ischemic myocardium (%ischemia) and CCTA by percent fractional myocardial mass (%FMM), respectively. In 49 patients with isolated diagonal branch disease, the mean %ischemia by MPI was 6.8±4.0% whereas in patients with total occlusion or severe disease of all diagonal branches, it was 8.4±3.3%. %ischemia was different according to the presence of non-diseased diagonal branches and dominant left circumflex artery (LCx). In CCTA cohort (306 patients, 564 diagonal branches), mean %FMM was 5.9±4.4% and 86 branches (15.2%) had %FMM 10%. %FMM was different according to LCx dominance, number of branches, vessel size, and relative dominance between 2 diagonal branches. The diagnostic accuracies of prediction models for %FMM 10% based on logistic regression and decision tree were 0.92 (95% CI 0.85-0.96) and 0.91 (95% CI 0.84-0.96), respectively. There was no difference in the diagnostic performance of models with and without size criterion.


CONCLUSIONS - LCx dominance, number of branches, vessel size, and dominance among diagonal branches determined the myocardial territory of diagonal branches. Clinical application of prediction models based on these anatomical attributes can help determine the clinically relevant diagonal branches in the cardiac catheterization laboratory.