CBS 2019
CBSMD教育中心
English

血流储备分数

科研文章

荐读文献

Relationship between fractional flow reserve value and the amount of subtended myocardium Instantaneous Wave-free Ratio versus Fractional Flow Reserve to Guide PCI Diagnostic accuracy of fractional flow reserve from anatomic CT angiography Use of the Instantaneous Wave-free Ratio or Fractional Flow Reserve in PCI Long-term clinical outcome after fractional flow reserve-guided treatment in patients with angiographically equivocal left main coronary artery stenosis Individual Lesion-Level Meta-Analysis Comparing Various Doses of Intracoronary Bolus Injection of Adenosine With Intravenous Administration of Adenosine for Fractional Flow Reserve Assessment Fractional Flow Reserve–Guided PCI for Stable Coronary Artery Disease Robustness of Fractional Flow Reserve for Lesion Assessment in Non-Infarct-Related Arteries of Patients With Myocardial Infarction Meta-Analysis of Death and Myocardial Infarction in the DEFINE-FLAIR and iFR-SWEDEHEART Trials Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty

Clinical Trial2017 Nov 15;120(10):1772-1779

JOURNAL:Am J Cardiol. Article Link

Intracoronary Optical Coherence Tomography-Derived Virtual Fractional Flow Reserve for the Assessment of Coronary Artery Disease

Seike F, Uetani T, Nishimura K et al. Keywords: Optical Coherence Tomography-Derived Virtual Fractional Flow Reserve

ABSTRACT


Fractional flow reserve (FFR) is widely used for the assessment of myocardial ischemia. Optical coherence tomography (OCT) provides accurate visualization of coronary artery morphology. The aim of this study was to investigate the relation between FFR and OCT-derived FFR. We retrospectively analyzed 31 lesions (25 left anterior descending arteries, 2 left circumflex arteries, and 4 right coronary arteries) in 31 patients with moderate-to-severe coronary stenosis, who underwent OCT and FFR measurements simultaneously. OCT-derived FFR was calculated by the original algorithm, which was calculated using the following equation based on fluid dynamics: ΔP = FV + SV2, where V is the flow velocity, F is the coefficient of pressure loss because of viscous friction (Poiseuille resistance), and S is the coefficient of local pressure loss because of abrupt enhancement (flow separation). Mean values of % diameter stenosis by quantitative coronary angiography and FFR were 55.2 ± 14.0% and 0.70 ± 0.14, respectively. OCT-derived FFR showed a stronger linear correlation with FFR measurements (r = 0.89, p <0.001; root mean square error = 0.062 FFR units) than quantitative coronary angiography % diameter stenosis (r = -0.65, p <0.001), OCT measurements of minimum lumen area (r = 0.68, p <0.001), and % area stenosis (r = -0.70, p <0.001). OCT-derived FFR has the potential to become an alternative method for the assessment of functional myocardial ischemia, and may elucidate the relation between coronary morphology and FFR.

Copyright © 2017 Elsevier Inc. All rights reserved.