CBS 2019
CBSMD教育中心
中 文

光学相关断层扫描

Abstract

Recommended Article

Optical coherence tomography and C-reactive protein in risk stratification of acute coronary syndromes Clinical Predictors for Lack of Favorable Vascular Response to Statin Therapy in Patients With Coronary Artery Disease: A Serial Optical Coherence Tomography Study Uncovered Culprit Plaque Ruptures in Patients With ST-Segment Elevation Myocardial Infarction Assessed by Optical Coherence Tomography and Intravascular Ultrasound With iMap Optimal threshold of postintervention minimum stent area to predict in-stent restenosis in small coronary arteries: An optical coherence tomography analysis Impact of an optical coherence tomography guided approach in acute coronary syndromes: A propensity matched analysis from the international FORMIDABLE-CARDIOGROUP IV and USZ registry Comparison of Coronary Intimal Plaques by Optical Coherence Tomography in Arteries With Versus Without Internal Running Vasa Vasorum Assessment of the coronary calcification by optical coherence tomography Clinical Impact of Suboptimal Stenting and Residual Intrastent Plaque/Thrombus Protrusion in Patients With Acute Coronary Syndrome: The CLI-OPCI ACS Substudy (Centro per la Lotta Contro L'Infarto-Optimization of Percutaneous Coronary Intervention in Acute Coronary Syndrome)

Original Research2018 Oct 22;11(20):2058-2068.

JOURNAL:JACC Cardiovasc Interv. Article Link

Optical Coherence Tomography–Defined Plaque Vulnerability in Relation to Functional Stenosis Severity and Microvascular Dysfunction

Usui E, Yonetsu T, Kakuta T et al. Keywords: coronary artery disease; fractional flow reserve; microvascular dysfunction; optical coherence tomography; stenosis severity

ABSTRACT


OBJECTIVES - This study sought to investigate the relationship of unstable plaque features with physiological lesion severity and microvascular dysfunction.


BACKGROUND - The functional severity of epicardial lesions and microvascular dysfunction are both related to adverse clinical outcomes.


METHODS - We investigated 382 de novo intermediate and severe coronary lesions in 340 patients who underwent optical coherence tomography, fractional flow reserve (FFR), and index of microcirculatory resistance (IMR) examinations. Lesions were divided into tertiles based on either FFR or IMR values. The optical coherence tomography findings were compared among the tertiles of FFR and IMR. Each tertile was defined as follows: FFR-T1 (FFR <0.74), FFR-T2 (0.74 FFR 0.81), and FFR-T3 (FFR >0.81); and IMR-T1 (IMR 25), IMR-T2 (15 < IMR <25), and IMR-T3 (IMR 15).


RESULTS - No significant relationship was observed between FFR and IMR. The prevalence of optical coherence tomography-defined thin-cap fibroatheroma (TCFA) was significantly greater in IMR-T1 than in IMR-T2 and IMR-T3. An overall significant difference in the prevalence of TCFAs was detected among FFR tertiles, although no pairwise comparison revealed statistical significance. The prevalence of ruptured plaque was significantly greater in IMR-T1 than in IMR-T2 and IMR-T3, although no significant difference was observed between FFR tertiles. Multivariate analysis showed that FFR and IMR were independent predictors of the prevalence of TCFAs (odds ratio: 0.036; 95% confidence interval: 0.004 to 0342; p = 0.004; and odds ratio: 1.034; 95% confidence interval: 1.014 to 1.054; p = 0.001, respectively).


CONCLUSIONS - Lower FFR and higher IMR values were independent predictors of the presence of a TCFA in angiographically intermediate-to-severe stable lesions or nonculprit lesions in acute coronary syndrome.

 

Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.