CBS 2019
CBSMD教育中心
中 文

光学相关断层扫描

Abstract

Recommended Article

Histopathological validation of optical coherence tomography findings of the coronary arteries Lipid-rich plaque and myocardial perfusion after successful stenting in patients with non-ST-segment elevation acute coronary syndrome: an optical coherence tomography study Japan-United States of America Harmonized Assessment by Randomized Multicentre Study of OrbusNEich's Combo StEnt (Japan-USA HARMONEE) study: primary results of the pivotal registration study of combined endothelial progenitor cell capture and drug-eluting stent in patients with ischaemic coronary disease and non-ST-elevation acute coronary syndrome Optical coherence tomography predictors of target vessel myocardial infarction after provisional stenting in patients with coronary bifurcation disease Coronary Optical Coherence Tomography and Cardiac Magnetic Resonance Imaging to Determine Underlying Causes of Myocardial Infarction With Nonobstructive Coronary Arteries in Women Neoatherosclerosis in Patients With Coronary Stent Thrombosis: Findings From Optical Coherence Tomography Imaging (A Report of the PRESTIGE Consortium) Treatment of calcified coronary lesions with Palmaz-Schatz stents. An intravascular ultrasound study Nonculprit Lesion Plaque Morphology in Patients With ST-Segment–Elevation Myocardial Infarction: Results From the COMPLETE Trial Optical Coherence Tomography Substudys

Clinical Trial2014; 371:1208-1217

JOURNAL:N Engl J Med. Article Link

Fractional Flow Reserve–Guided PCI for Stable Coronary Artery Disease

De Bruyne B, Pijls NH, FAME 2 Trial Investigators et al. Keywords: fractional flow reserve; PCI; medical therapy; outcome

ABSTRACT


BACKGROUNDWe hypothesized that in patients with stable coronary artery disease and stenosis, percutaneous coronary intervention (PCI) performed on the basis of the fractional flow reserve (FFR) would be superior to medical therapy.


METHODS - In 1220 patients with stable coronary artery disease, we assessed the FFR in all stenoses that were visible on angiography. Patients who had at least one stenosis with an FFR of 0.80 or less were randomly assigned to undergo FFR-guided PCI plus medical therapy or to receive medical therapy alone. Patients in whom all stenoses had an FFR of more than 0.80 received medical therapy alone and were included in a registry. The primary end point was a composite of death from any cause, nonfatal myocardial infarction, or urgent revascularization within 2 years.

RESULTS - The rate of the primary end point was significantly lower in the PCI group than in the medical-therapy group (8.1% vs. 19.5%; hazard ratio, 0.39; 95% confidence interval [CI], 0.26 to 0.57; P<0.001). This reduction was driven by a lower rate of urgent revascularization in the PCI group (4.0% vs. 16.3%; hazard ratio, 0.23; 95% CI, 0.14 to 0.38; P<0.001), with no significant between-group differences in the rates of death and myocardial infarction. Urgent revascularizations that were triggered by myocardial infarction or ischemic changes on electrocardiography were less frequent in the PCI group (3.4% vs. 7.0%, P=0.01). In a landmark analysis, the rate of death or myocardial infarction from 8 days to 2 years was lower in the PCI group than in the medical-therapy group (4.6% vs. 8.0%, P=0.04). Among registry patients, the rate of the primary end point was 9.0% at 2 years.

CONCLUSIONS - In patients with stable coronary artery disease, FFR-guided PCI, as compared with medical therapy alone, improved the outcome. Patients without ischemia had a favorable outcome with medical therapy alone. (Funded by St. Jude Medical; FAME 2 ClinicalTrials.gov number, NCT01132495.)