CBS 2019
CBSMD教育中心
中 文

血流储备分数

Abstract

Recommended Article

Diagnostic accuracy of fractional flow reserve from anatomic CT angiography Use of the Instantaneous Wave-free Ratio or Fractional Flow Reserve in PCI Individual Lesion-Level Meta-Analysis Comparing Various Doses of Intracoronary Bolus Injection of Adenosine With Intravenous Administration of Adenosine for Fractional Flow Reserve Assessment Robustness of Fractional Flow Reserve for Lesion Assessment in Non-Infarct-Related Arteries of Patients With Myocardial Infarction Long-term clinical outcome after fractional flow reserve-guided treatment in patients with angiographically equivocal left main coronary artery stenosis Fractional Flow Reserve–Guided PCI for Stable Coronary Artery Disease Meta-Analysis of Death and Myocardial Infarction in the DEFINE-FLAIR and iFR-SWEDEHEART Trials Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty

Original ResearchVolume 72, Issue 16, October 2018

JOURNAL:J Am Coll Cardiol. Article Link

High Coronary Shear Stress in Patients With Coronary Artery Disease Predicts Myocardial Infarction

AKumar, EW Thompson, A Lefieux et al. Keywords: fractional flow reserve; high wall shear stress; proximal segment; stable coronary artery disease; vessel-related myocardial infarction

ABSTRACT


BACKGROUND - Coronary lesions with low fractional flow reserve (FFR) that are treated medically are associated with higher revascularization rates. High wall shear stress (WSS) has been linked with increased plaque vulnerability.


OBJECTIVES - This study investigated the prognostic value of WSS measured in the proximal segments of lesions (WSSprox) to predict myocardial infarction (MI) in patients with stable coronary artery disease (CAD) and hemodynamically significant lesions. The authors hypothesized that in patients with low FFR and stable CAD, higher WSSprox would predict MI.


METHODS - Among 441 patients in the FAME II (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation II) trial with FFR ≤0.80 who were randomized to medical therapy alone, 34 (8%) had subsequent MI within 3 years. Patients with vessel-related MI and adequate angiograms for 3-dimensional reconstruction (n = 29) were propensity matched to a control group with no MI (n = 29) by using demographic and clinical variables. Coronary lesions were divided into proximal, middle, and distal, along with 5-mm upstream and downstream segments. WSS was calculated for each segment.


RESULTS - Median age was 62 years, and 46 (79%) were male. In the marginal Cox model, whereas lower FFR showed a trend (hazard ratio: 0.084; p = 0.064), higher WSSprox (hazard ratio: 1.234; p = 0.002, C-index = 0.65) predicted MI.  Adding WSSprox to FFR resulted in a significant increase in global chi-square for predicting MI (p = 0.045), a net reclassification improvement of 0.69 (p = 0.005), and an integrated discrimination index of 0.11 (p = 0.010).


CONCLUSIONS - In patients with stable CAD and hemodynamically significant lesions, higher WSS in the proximal segments of atherosclerotic lesions is predictive of MI and has incremental prognostic value over FFR.