CBS 2019
CBSMD教育中心
中 文

血流储备分数

Abstract

Recommended Article

Diagnostic accuracy of intracoronary optical coherence tomography-derived fractional flow reserve for assessment of coronary stenosis severity The impact of downstream coronary stenoses on fractional flow reserve assessment of intermediate left main disease Prognostic Implications of Plaque Characteristics and Stenosis Severity in Patients With Coronary Artery Disease The Natural History of Nonculprit Lesions in STEMI: An FFR Substudy of the Compare-Acute Trial Coronary CT Angiographic and Flow Reserve-Guided Management of Patients With Stable Ischemic Heart Disease Influence of Local Myocardial Damage on Index of Microcirculatory Resistance and Fractional Flow Reserve in Target and Nontarget Vascular Territories in a Porcine Microvascular Injury Model Physiology-Based Revascularization: A New Approach to Plan and Optimize Percutaneous Coronary Intervention: State-of-the-Art Review Prognostic Implication of Functional Incomplete Revascularization and Residual Functional SYNTAX Score in Patients With Coronary Artery Disease

Review Article2018 Sep;72(3):179-185.

JOURNAL:J Cardiol. Article Link

Histopathological validation of optical coherence tomography findings of the coronary arteries

Fujii K, Kawakami R, Hirota S. Keywords: atherosclerosis; OCT; Stent; histopathological validation

ABSTRACT


Optical coherence tomography (OCT), a catheter-based imaging modality for the visualization of coronary arteries, is widely used during percutaneous coronary intervention to improve the understanding of the anatomy of coronary artery stenosis and to elucidate the mechanisms of atherosclerosis. In this review, we provide a short description of the histopathological validations of OCT for visualizing atherosclerotic plaques and vascularhealing response after drug-eluting stent (DES) implantation. Because OCT measures the intensity of light returning from within a tissue, tissue having a higher heterogeneity of optical index of refraction, such as microcalcification deposition and foam cell accumulation on the luminal surface, may exhibit stronger optical scattering that appears as a thin-cap fibroatheroma image. Furthermore, even if OCT shows exposed uncovered stent struts, some of the struts could be re-endothelialized. In our ex vivo histopathological experience, re-endothelialization at the surface of stent struts was confirmed by histopathological analysis, although OCT images showed exposed uncovered struts after DES implantation. Therefore, careful interpretation is required to assess tissue morphology and stent strut coverage by OCT.