CBS 2019
CBSMD教育中心
中 文

血流储备分数

Abstract

Recommended Article

Diagnostic accuracy of fractional flow reserve from anatomic CT angiography Use of the Instantaneous Wave-free Ratio or Fractional Flow Reserve in PCI Individual Lesion-Level Meta-Analysis Comparing Various Doses of Intracoronary Bolus Injection of Adenosine With Intravenous Administration of Adenosine for Fractional Flow Reserve Assessment Robustness of Fractional Flow Reserve for Lesion Assessment in Non-Infarct-Related Arteries of Patients With Myocardial Infarction Fractional Flow Reserve–Guided PCI for Stable Coronary Artery Disease Long-term clinical outcome after fractional flow reserve-guided treatment in patients with angiographically equivocal left main coronary artery stenosis Meta-Analysis of Death and Myocardial Infarction in the DEFINE-FLAIR and iFR-SWEDEHEART Trials Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty

Review Article2018 Jun 25.[Epub ahead of print]

JOURNAL:Curr Pharm Des. Article Link

Coronary Microcirculation in Ischemic Heart Disease

Pries AR, Kuebler WM, Habazettl H. Keywords: Angioadaptation; Heterogeneity; Inflammation; Leucocyte-Endothelium Interaction; Microvessels; vascular Permeability

ABSTRACT


BACKGROUND - Ischemic heart disease has long been considered to be exlusively caused by stenosis or occlusion. However, the coronary microcirculation too may play an important role in ischemic conditions. Also, the crucial role of microvessels in not only regulating blood flow on a local level but also mediating vascular permeability or inflammatory responses has been recognized.


OBJECTIVE - To review important physiological and pathophysiological mechanisms of coronary microcirculatory control with focus on heterogeneity of local perfusion, microvascular permeability and inflammation.

METHOD - Selective research of the literature.

RESULTS - Heterogeneity is a characteristic of microvascular networks and affects structural and functional parameters such as vessel diameter, length, and connection pattern, flow velocity, wall shear stress, and oxygenation. The networks are optimized to meet the metabolic demand of all tissue compartments. This requires continuous vascular adaptation regulated by local hemodynamic and metabolic stimuli. Compromising this regulation results in functional arterio-venous shunting and tissue areas with either hyperperfusion or hypoxia in close proximity. In ischemia-reperfusion, increased microvascular permeability may aggravate tissue hypoxia by increasing extravascular pressure and seems to contribute to adverse myocardial remodeling. Transendothelial transport mechanisms and deterioration of the endothelial glycocalyx seem to be major contributors to tissue edema. Also in the context of ischemia-reperfusion, an inflammatory response mediated by venular endothelium expressing specific adhesion molecules contributes to tissue injury. However, anti-inflammatory therapies failed in clinical studies and a multi-targeted approach for cardiac protection has been demanded.

CONCLUSION - Disturbances of the coronary microcirculation are involved in different pathophysiological aspects of reperfusion injury.

Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.