CBS 2019
CBSMD教育中心
中 文

Cardio-Oncology

Abstract

Recommended Article

Long-term Cardiopulmonary Consequences of Treatment-Induced Cardiotoxicity in Survivors of ERBB2-Positive Breast Cancer Long-Term Outcomes of Patients With Mediastinal Radiation–Associated Coronary Artery Disease Undergoing Coronary Revascularization With Percutaneous Coronary Intervention and Coronary Artery Bypass Grafting Venous and Arterial Thromboembolism in Patients With Cancer: JACC: CardioOncology State-of-the-Art Review Cardio-Oncology: How New Targeted Cancer Therapies and Precision Medicine Can Inform Cardiovascular Discovery Strain-Guided Management of Potentially Cardiotoxic Cancer Therapy Rivaroxaban for Thromboprophylaxis in High-Risk Ambulatory Patients With Cancer Drug-Drug Interactions of Common Cardiac Medications and Chemotherapeutic Agents Cardiotoxicity and Cardiac Monitoring Among Chemotherapy-Treated Breast Cancer Patients

Original Research2018 Feb;233(2):1384-1395.

JOURNAL:J Cell Physiol. Article Link

Low shear stress induces endothelial reactive oxygen species via the AT1R/eNOS/NO pathway

Chao Y, Ye P, Chen SL et al. Keywords: angiotensin II type 1 receptor; eNOS uncoupling; low shear stress; nitric oxide; reactive oxygen species

ABSTRACT


Reactive oxygen species (ROS) contribute to many aspects of physiological and pathological cardiovascular processes. However, the underlying mechanism of ROS induction by low shear stress (LSS) remains unclear. Accumulating evidence has shown that the angiotensin II type 1 receptor (AT1R) is involved in inflammation, apoptosis, and ROS production. Our aim was to explore the role of AT1R in LSS-mediated ROS induction. We exposed human umbilical vein endothelial cells (HUVECs) to LSS (3 dyn/cm2 ) for different periods of time. Western blotting and immunofluorescence showed that LSS significantly induced AT1R expression in a time-dependent manner. Using immunohistochemistry, we also noted a similar increase in AT1R expression in the inner curvature of the aortic arch compared to the descending aorta in C57BL/6 mice. Additionally, HUVECs were cultured with a fluorescent probe, either DCFH, DHE or DAF, after being subjected to LSS. Cell chemiluminescence and flow cytometry results revealed that LSS stimulated ROS levels and suppressed nitric oxide (NO) generation in a time-dependent manner, which was reversed by the AT1R antagonist Losartan. We also found that Losartan markedly increased endothelial NO synthase (eNOS) phosphorylation at Ser(633,1177) and dephosphorylation at Thr(495), which involved AKT and ERK. Moreover, the ROS level was significantly reduced by endogenous and exogenous NO donors (L-arginine, SNP) and increased by the eNOS inhibitor L-NAME. Overall, we conclude that LSS induces ROS via AT1R/eNOS/NO.