CBS 2019
CBSMD教育中心
English

血流储备分数

科研文章

荐读文献

The Utility of Contrast Medium Fractional Flow Reserve in Functional Assessment Of Coronary Disease in Daily Practice Post-stenting fractional flow reserve vs coronary angiography for optimisation of percutaneous coronary intervention: TARGET-FFR trial Clinical Outcomes and Cost-Effectiveness of Fractional Flow Reserve-Guided Percutaneous Coronary Intervention in Patients With Stable Coronary Artery Disease: Three-Year Follow-Up of the FAME 2 Trial (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) Diagnostic Accuracy of Angiography-Based Quantitative Flow Ratio Measurements for Online Assessment of Coronary Stenosis Physiologic Characteristics and Clinical Outcomes of Patients With Discordance Between FFR and iFR Robustness of Fractional Flow Reserve for Lesion Assessment in Non-Infarct-Related Arteries of Patients With Myocardial Infarction Influence of Heart Rate on FFR Measurements: An Experimental and Clinical Validation Study Individual Lesion-Level Meta-Analysis Comparing Various Doses of Intracoronary Bolus Injection of Adenosine With Intravenous Administration of Adenosine for Fractional Flow Reserve Assessment Real-world clinical utility and impact on clinical decision-making of coronary computed tomography angiography-derived fractional flow reserve: lessons from the ADVANCE Registry Fractional Flow Reserve-Guided Complete Revascularization Improves the Prognosis in Patients With ST-Segment-Elevation Myocardial Infarction and Severe Nonculprit Disease: A DANAMI 3-PRIMULTI Substudy (Primary PCI in Patients With ST-Elevation Myocardial Infarction and Multivessel Disease: Treatment

Original ResearchMay, 2019

JOURNAL:EuroIntervention. Article Link

Diagnostic accuracy of intracoronary optical coherence tomography-derived fractional flow reserve for assessment of coronary stenosis severity

W Yu, JY Huang, SX Tu et al. Keywords: OCT based FFR; OFR; diagnostic accuracy; wire-based FFR; flow-limiting coronary stenosis

ABSTRACT


AIMS - A novel method for computation of fractional flow reserve (FFR) from optical coherence tomography (OCT) was developed recently. This study aimed to evaluate the diagnostic accuracy of a new OCT-based FFR (OFR) computational approach, using wire-based FFR as the reference standard.


METHODS AND RESULTS - Patients who underwent both OCT and FFR prior to intervention were analysed. The lumen of the interrogated vessel and the ostia of the side branches were automatically delineated and used to compute OFR. Bifurcation fractal laws were applied to correct the change in reference lumen size due to the step-down phenomenon. OFR was compared with FFR, both using a cut-off value of 0.80 to define ischaemia. Computational analysis was performed in 125 vessels from 118 patients. Average FFR was 0.80±0.09. Accuracy, sensitivity, specificity, positive predictive value, and negative predictive value for OFR to identify FFR 0.80 was 90% (95% CI: 84-95), 87% (95% CI: 77-94), 92% (95% CI: 82-97), 92% (95% CI: 82-97), and 88% (95% CI: 77-95), respectively. The AUC was higher for OFR than minimal lumen area (0.93 [95% CI: 0.87-0.97] versus 0.80 [95% CI: 0.72-0.86], p=0.002). Average OFR analysis time was 55±23 seconds for each OCT pullback. Intra- and inter-observer variability in OFR analysis was 0.00±0.02 and 0.00±0.03, respectively.


CONCLUSIONS - OFR is a novel and fast method allowing assessment of flow-limiting coronary stenosis without pressure wire and induced hyperaemia. The good diagnostic accuracy and low observer variability bear the potential of improved integration of intracoronary imaging and physiological assessment.