ABSTRACT
OBJECTIVES - This study sought to determine whether low endothelial shear stress (ESS) adds independent prognostication for future major adverse cardiac events (MACE) in coronary lesions in patients with high-risk acute coronary syndrome (ACS) from the United States and Europe.
BACKGROUND - Low ESS is a proinflammatory, proatherogenic stimulus associated with coronary plaque development, progression, and destabilization in human-like animal models and in humans. Previous natural history studies including baseline ESS characterization investigated low-risk patients.
METHODS - In the PROSPECT (Providing Regional Observations to Study Predictors of Events in the Coronary Tree) study, 697 patients with ACS underwent 3-vessel intracoronary imaging. Independent predictors of MACE attributable to untreated nonculprit (nc) coronary lesions during 3.4-year follow-up were large plaque burden (PB), small minimum lumen area (MLA), and thin-cap fibroatheroma (TCFA) morphology. In this analysis, baseline ESS of nc lesions leading to new MACE (nc-MACE lesions) and randomly selected control nc lesions without MACE (nc-non-MACE lesions) were calculated. A propensity score for ESS was constructed for each lesion, and the relationship between ESS and subsequent nc-MACE was examined.
RESULTS - A total of 145 lesions were analyzed in 97 patients: 23 nc-MACE lesions (13 TCFAs, 10 thick-cap fibroatheromas [ThCFAs]), and 122 nc-non-MACE lesions (63 TCFAs, 59 ThCFAs). Low local ESS (<1.3 Pa) was strongly associated with subsequent nc-MACE compared with physiological/high ESS (≥1.3 Pa) (23 of 101 [22.8%]) versus (0 of 44 [0%]). In propensity-adjusted Cox regression, low ESS was strongly associated with MACE (hazard ratio: 4.34; 95% confidence interval: 1.89 to 10.00; p < 0.001). Categorizing plaques by anatomic risk (high risk: ≥2 high-risk characteristics PB ≥70%, MLA ≤4 mm2, or TCFA), high anatomic risk, and low ESS were prognostically synergistic: 3-year nc-MACE rates were 52.1% versus 14.4% versus 0.0% in high-anatomic risk/low-ESS, low-anatomic risk/low-ESS, and physiological/high-ESS lesions, respectively (p < 0.0001). No lesion without low ESS led to nc-MACE during follow-up, regardless of PB, MLA, or lesion phenotype at baseline.
CONCLUSIONS - Local low ESS provides incremental risk stratification of untreated coronary lesions in high-risk patients, beyond measures of PB, MLA, and morphology.
Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.