CBS 2019
CBSMD教育中心
English

血流储备分数

科研文章

荐读文献

Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps) Comparison of Coronary Computed Tomography Angiography, Fractional Flow Reserve, and Perfusion Imaging for Ischemia Diagnosis Coronary Flow Reserve in the Instantaneous Wave-Free Ratio/Fractional Flow Reserve Era: Too Valuable to Be Neglected The Natural History of Nonculprit Lesions in STEMI: An FFR Substudy of the Compare-Acute Trial Anatomical and Functional Computed Tomography for Diagnosing Hemodynamically Significant Coronary Artery Disease: A Meta-Analysis Identification of High-Risk Plaques Destined to Cause Acute Coronary Syndrome Using Coronary Computed Tomographic Angiography and Computational Fluid Dynamics Coronary fractional flow reserve in bifurcation stenoses: what have we learned? Coronary CT Angiographic and Flow Reserve-Guided Management of Patients With Stable Ischemic Heart Disease The impact of downstream coronary stenoses on fractional flow reserve assessment of intermediate left main disease Safety of the Deferral of Coronary Revascularization on the Basis of Instantaneous Wave-Free Ratio and Fractional Flow Reserve Measurements in Stable Coronary Artery Disease and Acute Coronary Syndromes

Original Research30 December 2019

JOURNAL:European Heart Journal Article Link

Fractional flow reserve in clinical practice: from wire-based invasive measurement to image-based computation

SX Tu, J Westra, J Adjedj et al. Keywords: coronary angiography; fractional coronary flow reserve; intravascular ultrasonography; bone wires; catheterization; constriction; pathologic diagnosis; diagnostic imaging; physiology; revascularization

ABSTRACT


Fractional flow reserve (FFR) and instantaneous wave-free ratio are the present standard diagnostic methods for invasive assessment of the functional significance of epicardial coronary stenosis. Despite the overall trend towards more physiology-guided revascularization, there remains a gap between guideline recommendations and the clinical adoption of functional evaluation of stenosis severity. A number of image-based approaches have been proposed to compute FFR without the use of pressure wire and induced hyperaemia. In order to better understand these emerging technologies, we sought to highlight the principles, diagnostic performance, clinical applications, practical aspects, and current challenges of computational physiology in the catheterization laboratory. Computational FFR has the potential to expand and facilitate the use of physiology for diagnosis, procedural guidance, and evaluation of therapies, with anticipated impact on resource utilization and patient outcomes.