CBS 2019
CBSMD教育中心
English

充血性心力衰竭

科研文章

荐读文献

Noninvasive Imaging for the Evaluation of Diastolic Function: Promises Fulfilled 2021 ACC/AHA Key Data Elements and Definitions for Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards (Writing Committee to Develop Clinical Data Standards for Heart Failure) Differential Impact of Heart Failure With Reduced Ejection Fraction on Men and Women Association of Reduced Apical Untwisting With Incident HF in Asymptomatic Patients With HF Risk Factors Proteomics to Improve Phenotyping in Obese Patients with Heart Failure with Preserved Ejection Fraction Lateral Wall Dysfunction Signals Onset of Progressive Heart Failure in Left Bundle Branch Block Haemodynamic-guided management of heart failure (GUIDE-HF): a randomised controlled trial Clinical Phenogroups in Heart Failure With Preserved Ejection Fraction: Detailed Phenotypes, Prognosis, and Response to Spironolactone Criteria for Iron Deficiency in Patients With Heart Failure 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines

Clinical TrialVolume 6, Issue 10, October 2018

JOURNAL:JACC: Heart Failure Article Link

Randomized Evaluation of Heart Failure With Preserved Ejection Fraction Patients With Acute Heart Failure and Dopamine - The ROPA-DOP Trial

K Sharma, Stuart D. Russell and on behalf of the Osler Medical Housestaff. Keywords: acute decompensated heart failurediuresisdopamineheart failure with preserved ejection fraction; worsening renal function

ABSTRACT


OBJECTIVES - This study sought to compare a continuous infusion diuretic strategy versus an intermittent bolus diuretic strategy, with the addition of low-dose dopamine (3 μg/kg/min) in the treatment of hospitalized patients with heart failure with preserved ejection fraction (HFpEF).


BACKGROUND - HFpEF patients are susceptible to development of worsening renal function (WRF) when hospitalized with acute heart failure; however, inpatient treatment strategies to achieve safe and effective diuresis in HFpEF patients have not been studied to date.


METHODS - In a prospective, randomized, clinical trial, 90 HFpEF patients hospitalized with acute heart failure were randomized within 24 h of admission to 1 of 4 treatments: 1) intravenous bolus furosemide administered every 12 h; 2) continuous infusion furosemide; 3) intermittent bolus furosemide with low-dose dopamine; and 4) continuous infusion furosemide with low-dose dopamine. The primary endpoint was percent change in creatinine from baseline to 72 h. Linear and logistic regression analyses with tests for interactions between diuretic and dopamine strategies were performed.


RESULTS - Compared to intermittent bolus strategy, the continuous infusion strategy was associated with higher percent increase in creatinine (continuous infusion: 16.01%; 95% confidence interval [CI]: 8.58% to 23.45% vs. intermittent bolus: 4.62%; 95% CI: −1.15% to 10.39%; p = 0.02). Low-dose dopamine had no significant effect on percent change in creatinine (low-dose dopamine: 12.79%; 95% CI: 5.66% to 19.92%, vs. no-dopamine: 8.03%; 95% CI: 1.44% to 14.62%; p = 0.33). Continuous infusion was also associated with greater risk of WRF than intermittent bolus (odds ratio [OR]: 4.32; 95% CI: 1.26 to 14.74; p = 0.02); no differences in WRF risk were seen with low-dose dopamine. No significant interaction was seen between diuretic strategy and low-dose dopamine (p > 0.10).


CONCLUSIONS - In HFpEF patients hospitalized with acute heart failure, low-dose dopamine had no significant impact on renal function, and a continuous infusion diuretic strategy was associated with renal impairment. (Diuretics and Dopamine in Heart Failure With Preserved Ejection Fraction [ROPA-DOP]; NCT01901809)