CBS 2019
CBSMD教育中心
English

肺动脉高压

科研文章

荐读文献

rhACE2 Therapy Modifies Bleomycin-Induced Pulmonary Hypertension via Rescue of Vascular Remodeling Pulmonary artery denervation to treat pulmonary arterial hypertension: the single-center, prospective, first-in-man PADN-1 study (first-in-man pulmonary artery denervation for treatment of pulmonary artery hypertension) Pulmonary artery denervation for treatment of a patient with pulmonary hypertension secondary to left heart disease Pulmonary Artery Denervation Attenuates Pulmonary Arterial Remodeling in Dogs With Pulmonary Arterial Hypertension Induced by Dehydrogenized Monocrotaline Pulmonary vascular lesions occurring in patients with chronic major vessel thromboembolic pulmonary hypertension Increased pulmonary serotonin transporter in patients with chronic obstructive pulmonary disease who developed pulmonary hypertension Pulmonary Artery Denervation for Patients With Residual Pulmonary Hypertension After Pulmonary Endarterectomy Advances in therapeutic interventions for patients with pulmonary arterial hypertension 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): The Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC) Pulmonary Artery Denervation Using Catheter based Ultrasonic Energy

Clinical Trial2018 Jun 26. [Epub ahead of print]

JOURNAL:Eur Heart J. Article Link

Exercise unmasks distinct pathophysiologic features in heart failure with preserved ejection fraction and pulmonary vascular disease

Gorter TM, Obokata M, Borlaug BA et al. Keywords: Heart failure with preserved ejection fraction; Pulmonary vascular disease; Right heart catheterization; Invasive exercise haemodynamics

ABSTRACT


AIMSPulmonary hypertension (PH) and pulmonary vascular disease (PVD) are common and associated with adverse outcomes in heart failure with preserved ejection fraction (HFpEF). Little is known about the impact of PVD on the pathophysiology of exercise intolerance.


METHODS AND RESULTSHeart failure with preserved ejection fraction patients (n = 161) with elevated pulmonary capillary wedge pressure (≥15 mmHg) at rest were classified into three groups: non-PH-HFpEF (n = 21); PH but no PVD (isolated post-capillary PH, IpcPH; n = 95); and PH with PVD (combined post- and pre-capillary PH, CpcPH; n = 45). At rest, CpcPH-HFpEF patients had more right ventricular (RV) dysfunction and lower pulmonary arterial (PA) compliance compared to all other groups. While right atrial pressure (RAP) and left ventricular transmural pressure (LVTMP) were similar in HFpEF with and without PH or PVD at rest, CpcPH-HFpEF patients demonstrated greater increase in RAP, enhanced ventricular interdependence, and paradoxical reduction in LVTMP during exercise, differing from all other groups (P < 0.05). Lower PA compliance was correlated with greater increase in RAP with exercise. During exercise, CpcPH-HFpEF patients displayed an inability to enhance cardiac output, reduction in forward stroke volume, and blunted augmentation in RV systolic performance, changes that were coupled with marked limitation in aerobic capacity.

CONCLUSIONHeart failure with preserved ejection fraction patients with PVD demonstrate unique haemodynamic limitations during exercise that constrain aerobic capacity, including impaired recruitment of LV preload due to excessive right heart congestion and blunted RV systolic reserve. Interventions targeted to this distinct pathophysiology require testing in patients with HFpEF and PVD.