CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

Quantitative angiography methods for bifurcation lesions: a consensus statement update from the European Bifurcation Club Burden of 30-Day Readmissions After Percutaneous Coronary Intervention in 833,344 Patients in the United States: Predictors, Causes, and Cost Association Between Living in Food Deserts and Cardiovascular Risk 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries Endorsed Effects of Aspirin for Primary Prevention in Persons with Diabetes Mellitus Temporal trends in percutaneous coronary interventions thru the drug eluting stent era: Insights from 18,641 procedures performed over 12-year period Antithrombotic Therapy after Acute Coronary Syndrome or PCI in Atrial Fibrillation Blood CSF1 and CXCL12 as Causal Mediators of Coronary Artery Disease

Original Research2011 Jan 20;364(3):226-35.

JOURNAL:N Engl J Med. Article Link

A prospective natural-history study of coronary atherosclerosis

Stone GW, Maehara A, PROSPECT Investigators. Keywords: acute coronary syndrome; atherosclerotic plaque; coronary-artery stenosis; Lesion-related risk factor; three-vessel coronary angiography; gray-scale and radiofrequency intravascular ultrasonographic imaging; MACE

ABSTRACT


BACKGROUND - Atherosclerotic plaques that lead to acute coronary syndromes often occur at sites of angiographically mild coronary-artery stenosis. Lesion-related risk factors for such events are poorly understood.


METHODS - In a prospective study, 697 patients with acute coronary syndromes underwent three-vessel coronary angiography and gray-scale and radiofrequency intravascular ultrasonographic imaging after percutaneous coronary intervention. Subsequent major adverse cardiovascular events (death from cardiac causes, cardiac arrest, myocardial infarction, or rehospitalization due to unstable or progressive angina) were adjudicated to be related to either originally treated (culprit) lesions or untreated (nonculprit) lesions. The median follow-up period was 3.4 years.

RESULTS - The 3-year cumulative rate of major adverse cardiovascular events was 20.4%. Events were adjudicated to be related to culprit lesions in 12.9% of patients and to nonculprit lesions in 11.6%. Most nonculprit lesions responsible for follow-up events were angiographically mild at baseline (mean [±SD] diameter stenosis, 32.3±20.6%). However, on multivariate analysis, nonculprit lesions associated with recurrent events were more likely than those not associated with recurrent events to be characterized by a plaque burden of 70% or greater (hazard ratio, 5.03; 95% confidence interval [CI], 2.51 to 10.11; P<0.001) or a minimal luminal area of 4.0 mm(2) or less (hazard ratio, 3.21; 95% CI, 1.61 to 6.42; P=0.001) or to be classified on the basis of radiofrequency intravascular ultrasonography as thin-cap fibroatheromas (hazard ratio, 3.35; 95% CI, 1.77 to 6.36; P<0.001).

CONCLUSIONS - In patients who presented with an acute coronary syndrome and underwent percutaneous coronary intervention, major adverse cardiovascular events occurring during follow-up were equally attributable to recurrence at the site of culprit lesions and to nonculprit lesions. Although nonculprit lesions that were responsible for unanticipated events were frequently angiographically mild, most were thin-cap fibroatheromas or were characterized by a large plaque burden, a small luminal area, or some combination of these characteristics, as determined by gray-scale and radiofrequency intravascular ultrasonography. (Funded by Abbott Vascular and Volcano; ClinicalTrials.gov number, NCT00180466.).