CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

Long-Term Effect of Ultrathin-Strut Versus Thin-Strut Drug-Eluting Stents in Patients With Small Vessel Coronary Artery Disease Undergoing Percutaneous Coronary Intervention: A Subgroup Analysis of the BIOSCIENCE Randomized Trial Predicting the 10-Year Risks of Atherosclerotic Cardiovascular Disease in Chinese Population: The China-PAR Project (Prediction for ASCVD Risk in China) Management of two major complications in the cardiac catheterisation laboratory: the no-reflow phenomenon and coronary perforations Validation of High-Risk Features for Stent-Related Ischemic Events as Endorsed by the 2017 DAPT Guidelines A Randomized Trial to Assess Regional Left Ventricular Function After Stent Implantation in Chronic Total Occlusion The REVASC Trial Percutaneous coronary intervention in stable angina (ORBITA): a double-blind, randomised controlled trial From Nonclinical Research to Clinical Trials and Patient-registries: Challenges and Opportunities in Biomedical Research LOX-1 in Atherosclerosis and Myocardial Ischemia: Biology, Genetics, and Modulation

Review ArticleEpub 2017 Sep 15; Volume 15, 2017 - Issue 11

JOURNAL:Expert Rev Cardiovasc Ther. Article Link

Robotics in percutaneous cardiovascular interventions

Pourdjabbar A, Ang L, Mahmud E et al. Keywords: Robotics; coronary artery disease; percutaneous coronary intervention; peripheral arterial disease; radiation safety

ABSTRACT

Introduction - The fundamental technique of performing percutaneous cardiovascular (CV) interventions has remained unchanged and requires operators to wear heavy lead aprons to minimize exposure to ionizing radiation. Robotic technology is now being utilized in interventional cardiology partially as a direct result of the increasing appreciation of the long-term occupational hazards of the field. This review was undertaken to report the clinical outcomes of percutaneous robotic coronary and peripheral vascular interventions.

Areas covered - A systematic literature review of percutaneous robotic CV interventions was undertaken. The safety and feasibility of percutaneous robotically-assisted CV interventions has been validated in simple to complex coronary disease, and iliofemoral disease. Studies have shown that robotically-assisted PCI significantly reduces operator exposure to harmful ionizing radiation without compromising procedural success or clinical efficacy. In addition to the operator benefits, robotically-assisted intervention has the potential for patient advantages by allowing more accurate lesion length measurement, precise stent placement and lower patient radiation exposure. However, further investigation is required to fully elucidate these potential benefits.

Expert commentary - Incremental improvement in robotic technology and telecommunications would enable treatment of an even broader patient population, and potentially provide remote robotic PCI.