CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

Clinical Efficacy and Safety of Evolocumab in High-Risk Patients Receiving a Statin: Secondary Analysis of Patients With Low LDL Cholesterol Levels and in Those Already Receiving a Maximal-Potency Statin in a Randomized Clinical Trial Implantable Hemodynamic Monitoring for Heart Failure Patients Basic Biology of Oxidative Stress and the Cardiovascular System: Part 1 of a 3-Part Series The Impact of Proximal Vessel Tortuosity on the Outcomes of Chronic Total Occlusion Percutaneous Coronary Intervention: Insights From a Contemporary Multicenter Registry High-Risk Coronary Atherosclerosis Is It the Plaque Burden, the Calcium, the Lipid, or Something Else? The Role of Nitroglycerin and Other Nitrogen Oxides in Cardiovascular Therapeutics 2016 ACC/AHA/HFSA Focused Update on New Pharmacological Therapy for Heart Failure: An Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Frequency, Regional Variation, and Predictors of Undetermined Cause of Death in Cardiometabolic Clinical Trials: A Pooled Analysis of 9259 Deaths in 9 Trials

Original Research2017 Jan 20;12(13):1569-1576.

JOURNAL:EuroIntervention. Article Link

Percutaneous coronary intervention using a combination of robotics and telecommunications by an operator in a separate physical location from the patient: an early exploration into the feasibility of telestenting (the REMOTE-PCI study)

Madder RD, VanOosterhout SM, Jacoby ME et al. Keywords: telestenting; robotic PCI; feasibility

ABSTRACT


AIMSThe present study explores the feasibility of telestenting, wherein a physician operator performs stenting on a patient in a separate physical location using a combination of robotics and telecommunications.


METHODS AND RESULTSPatients undergoing robotic stenting were eligible for inclusion. All manipulations of guidewires, balloons, and stents were performed robotically by a physician operator located in an isolated separate room outside the procedure room housing the patient. Communication between the operating physician and laboratory personnel was via telecommunication devices providing real-time audio and video connectivity. Among 20 patients who consented to participate, technical success, defined as successful advancement and retraction of guidewires, balloons, and stents by the robotic system without conversion to manual operation, was achieved in 19 of 22 lesions (86.4%). Procedural success, defined as <30% residual stenosis upon completion of the procedure in the absence of death or repeat revascularisation prior to hospital discharge, was achieved in 19 of 20 patients (95.0%). There were no deaths or repeat revascularisations prior to hospital discharge.

CONCLUSIONSTo the best of our knowledge, the present study is the first to explore the feasibility of telestenting. Additional studies are required to determine if future advancements in robotics will facilitate telestenting over greater geographic distances.