CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC) Implantable Hemodynamic Monitoring for Heart Failure Patients The Impact of Proximal Vessel Tortuosity on the Outcomes of Chronic Total Occlusion Percutaneous Coronary Intervention: Insights From a Contemporary Multicenter Registry Basic Biology of Oxidative Stress and the Cardiovascular System: Part 1 of a 3-Part Series Clinical Efficacy and Safety of Evolocumab in High-Risk Patients Receiving a Statin: Secondary Analysis of Patients With Low LDL Cholesterol Levels and in Those Already Receiving a Maximal-Potency Statin in a Randomized Clinical Trial High-Risk Coronary Atherosclerosis Is It the Plaque Burden, the Calcium, the Lipid, or Something Else? Frequency, Regional Variation, and Predictors of Undetermined Cause of Death in Cardiometabolic Clinical Trials: A Pooled Analysis of 9259 Deaths in 9 Trials 2016 ACC/AHA/HFSA Focused Update on New Pharmacological Therapy for Heart Failure: An Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure

Original ResearchVolume 11, Issue 12, December 2018

JOURNAL:JACC Cardiovasc Imaging. Article Link

Coronary Artery Calcium Progression Is Associated With Coronary Plaque Volume Progression - Results From a Quantitative Semiautomated Coronary Artery Plaque Analysis

I Ceponiene, R Nakanishi, K Osawa et al. Keywords: coronary artery calcium progression; coronary computed tomography angiography; plaque progression

ABSTRACT


OBJECTIVES - The aim of this study was to determine whether coronary artery calcium (CAC) progression was associated with coronary plaque progression on coronary computed tomographic angiography.


BACKGROUND - CAC progression and coronary plaque characteristics are associated with incident coronary heart disease. However, natural history of coronary atherosclerosis has not been well described to date, and the understanding of the association between CAC progression and coronary plaque subtypes such as noncalcified plaque progression remains unclear.


METHODS - Consecutive patients who were referred to our clinic for evaluation and had serial coronary computed tomography angiography scans performed were included in the study. Coronary artery plaque (total, fibrous, fibrous-fatty, low-attenuation, densely calcified) volumes were calculated using semiautomated plaque analysis software.


RESULTS - A total of 211 patients (61.3 ± 12.7 years of age, 75.4% men) were included in the analysis. The mean interval between baseline and follow-up scans was 3.3 ± 1.7 years. CAC progression was associated with a significant linear increase in all types of coronary plaque and no plaque progression was observed in subjects without CAC progression. In multivariate analysis, annualized and normalized total plaque (β = 0.38; p < 0.001), noncalcified plaque (β = 0.35; p = 0.001), fibrous plaque (β = 0.56; p < 0.001), and calcified plaque (β = 0.63; p = 0.001) volume progression, but not fibrous-fatty (β = 0.03; p = 0.28) or low-attenuation plaque (β = 0.11; p = 0.1) progression, were independently associated with CAC progression. Plaque progression did not differ between the sexes. A significantly increased total and calcified plaque progression was observed in statin users.


CONCLUSIONS - In a clinical practice setting, progression of CAC was significantly associated with an increase in both calcified and noncalcified plaque volume, except fibrous-fatty and low-attenuation plaque. Serial CAC measurements may be helpful in determining the need for intensification of preventive treatment.