CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

State of the Art in Noninvasive Imaging of Ischemic Heart Disease and Coronary Microvascular Dysfunction in Women: Indications, Performance, and Limitations Prospective Elimination of Distal Coronary Sinus to Left Atrial Connection for Atrial Fibrillation Ablation (PRECAF) Randomized Controlled Trial The Role of Nitroglycerin and Other Nitrogen Oxides in Cardiovascular Therapeutics Syncope After Percutaneous Coronary Intervention Impact of Artificial Intelligence on Interventional Cardiology: From Decision-Making Aid to Advanced Interventional Procedure Assistance Astro-CHARM, the First 10-year ASCVD Risk Estimator Incorporating Coronary Calcium Comparison of Stenting Versus Bypass Surgery According to the Completeness of Revascularization in Severe Coronary Artery Disease: Patient-Level Pooled Analysis of the SYNTAX, PRECOMBAT, and BEST Trials Contemporary Antiplatelet Pharmacotherapy in the Management of Acute Coronary Syndromes

Review Article2016 May 1;117(9):1444-8.

JOURNAL:Am J Cardiol. Article Link

A VOYAGER Meta-Analysis of the Impact of Statin Therapy on Low-Density Lipoprotein Cholesterol and Triglyceride Levels in Patients With Hypertriglyceridemia

Karlson BW, Palmer MK, Nicholls SJ et al. Keywords: cholesterol; LDL/blood; hypertriglyceridemia; drug therapy; triglycerides

FULL TEXT PDF


Elevated triglyceride (TG) levels are associated with increased cardiovascular disease risk. In patients with mild-to-moderate hypertriglyceridemia, defined by the European Atherosclerosis Society Consensus Panel as a TG level of 177 to 885 mg/dl (2.0 to 10.0 mmol/L), low-density lipoprotein cholesterol (LDL-C) reduction remains the primary treatment goal. Using data from the indiVidual patient meta-analysis Of statin therapY in At risk Groups: Effects of Rosuvastatin, atorvastatin and simvastatin (VOYAGER) meta-analysis, we analyzed LDL-C and TG reductions in patients with baseline TG ≥177 mg/dl (≥2.0 mmol/L). Least squares mean percentage change from baseline in LDL-C and TG was compared using 15,800 patient exposures to rosuvastatin 5 to 40 mg, atorvastatin 10 to 80 mg, and simvastatin 10 to 80 mg in patients with baseline TG ≥177 mg/dl (≥2.0 mmol/L). Comparisons were made using mixed-effects models with data only from studies directly comparing treatments by randomized design. Mean LDL-C reductions ranged from -26.9% to -55.5%. Rosuvastatin 10 to 40 mg resulted in significantly greater LDL-C reductions than equal or double doses of atorvastatin and simvastatin (p <0.05). Mean TG reductions ranged from -15.1% to -31.3%. Rosuvastatin 10 mg resulted in significantly greater TG reductions than atorvastatin 10 mg (p <0.05). Rosuvastatin 20 and 40 mg resulted in TG reductions similar to those with equal doses of atorvastatin. Rosuvastatin 10 to 40 mg resulted in significantly greater TG reductions than equal or double doses of simvastatin (p <0.05). In conclusion, in patients with hypertriglyceridemia, LDL-C reduction was substantial and dependent on the choice and dose of statin. TG reduction was numerically less than for LDL-C, and additional TG-lowering therapy may be considered to further reduce residual cardiovascular risk.