CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

A Test in Context: E/A and E/e' to Assess Diastolic Dysfunction and LV Filling Pressure A randomized multicentre trial to compare revascularization with optimal medical therapy for the treatment of chronic total coronary occlusions Pulmonary Artery Pressure-Guided Management of Patients With Heart Failure and Reduced Ejection Fraction Effect of Aspirin on All-Cause Mortality in the Healthy Elderly Residual Inflammatory Risk in Patients With Low LDL Cholesterol Levels Undergoing Percutaneous Coronary Intervention When high‐volume PCI operators in high‐volume hospitals move to lower volume hospitals—Do they still maintain high volume and quality of outcomes? Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association ACCF/SCAI/STS/AATS/AHA/ASNC 2009 Appropriateness Criteria for Coronary Revascularization: A Report by the American College of Cardiology Foundation Appropriateness Criteria Task Force, Society for Cardiovascular Angiography and Interventions, Society of Thoracic Surgeons, American Association for Thoracic Surgery, American Heart Association, and the American Society of Nuclear Cardiology Endorsed by the American Society of Echocardiography, the Heart Failure Society of America, and the Society of Cardiovascular Computed Tomography

Review ArticleVolume 72, Issue 25, December 2018

JOURNAL:J Am Coll Cardiol. Article Link

Future of Personalized Cardiovascular Medicine

RM Califf Keywords: data science; electronic health record; precision medicine; registry

ABSTRACT


Previous decades have seen significant progress in the biological understanding of cardiovascular disease, as well as major advances in computational and information technologies. However, anticipated improvements in outcomes, quality, and cost of cardiovascular medicine at the individual and population levels from these advances have lagged expectations. Further, trends showing widening gaps in the pace of technological development and its successful uptake and application in practice suggests that substantial systemic changes are needed. Recent declines in key U.S. health outcomes have added further urgency to seek scalable approaches that deliver the right treatment to the right patient and to develop information-driven policies that improve health. The clinical care and research enterprises are currently in the midst of assimilating changes entrained by a “fourth industrial revolution” marked by the convergence of biology, physical sciences, and information science. These changes, if managed appropriately, can simultaneously enable cost-effective personalized medical care as well as more effective and targeted population health interventions. In this paper derived from a lecture in honor of cardiologist Paul Dudley White, the author explores how White’s prescient insights into prevention and treatment continue to resonate today as we seek to assimilate ubiquitous computing, sophisticated sensor technologies, and bidirectional digital communication into the practice of cardiology. How the ongoing acceleration in basic science and information technologies can be wedded to the principles articulated by White as we pursue scalable approaches to personalized medicine is also examined.