CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

Atrial Fibrillation Burden: Moving Beyond Atrial Fibrillation as a Binary Entity: A Scientific Statement From the American Heart Association Implantable Hemodynamic Monitoring for Heart Failure Patients Basic Biology of Oxidative Stress and the Cardiovascular System: Part 1 of a 3-Part Series Clinical Efficacy and Safety of Evolocumab in High-Risk Patients Receiving a Statin: Secondary Analysis of Patients With Low LDL Cholesterol Levels and in Those Already Receiving a Maximal-Potency Statin in a Randomized Clinical Trial The Impact of Proximal Vessel Tortuosity on the Outcomes of Chronic Total Occlusion Percutaneous Coronary Intervention: Insights From a Contemporary Multicenter Registry High-Risk Coronary Atherosclerosis Is It the Plaque Burden, the Calcium, the Lipid, or Something Else? Frequency, Regional Variation, and Predictors of Undetermined Cause of Death in Cardiometabolic Clinical Trials: A Pooled Analysis of 9259 Deaths in 9 Trials 2016 ACC/AHA/HFSA Focused Update on New Pharmacological Therapy for Heart Failure: An Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure

Review ArticleVolume 12, Issue 14, July 2019

JOURNAL:JACC Cardiovasc Interv. Article Link

Impact of Artificial Intelligence on Interventional Cardiology: From Decision-Making Aid to Advanced Interventional Procedure Assistance

P Sardar, JD Abbott, A Kundu et al. Keywords: artificial intelligence; interventional cardiology

ABSTRACT


Access to big data analyzed by supercomputers using advanced mathematical algorithms (i.e., deep machine learning) has allowed for enhancement of cognitive output (i.e., visual imaging interpretation) to previously unseen levels and promises to fundamentally change the practice of medicine. This field, known as “artificial intelligence” (AI), is making significant progress in areas such as automated clinical decision making, medical imaging analysis, and interventional procedures, and has the potential to dramatically influence the practice of interventional cardiology. The unique nature of interventional cardiology makes it an ideal target for the development of AI-based technologies designed to improve real-time clinical decision making, streamline workflow in the catheterization laboratory, and standardize catheter-based procedures through advanced robotics. This review provides an introduction to AI by highlighting its scope, potential applications, and limitations in interventional cardiology.