CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

Guidelines in review: Comparison of the 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes and the 2015 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation Incidence, Predictors, and Outcomes of In-Hospital Percutaneous Coronary Intervention Following Coronary Artery Bypass Grafting Current Perspectives on Coronavirus Disease 2019 and Cardiovascular Disease: A White Paper by the JAHA Editors Radial Versus Femoral Access for Coronary Interventions Across the Entire Spectrum of Patients With Coronary Artery Disease: A Meta-Analysis of Randomized Trials Association between urinary dickkopf-3, acute kidney injury, and subsequent loss of kidney function in patients undergoing cardiac surgery: an observational cohort study Plaque progression assessed by a novel semi-automated quantitative plaque software on coronary computed tomography angiography between diabetes and non-diabetes patients: A propensity-score matching study Older Adults in the Cardiac Intensive Care Unit: Factoring Geriatric Syndromes in the Management, Prognosis, and Process of Care: A Scientific Statement From the American Heart Association Variation in Revascularization Practice and Outcomes in Asymptomatic Stable Ischemic Heart Disease

Review ArticleVolume 12, Issue 14, July 2019

JOURNAL:JACC Cardiovasc Interv. Article Link

Impact of Artificial Intelligence on Interventional Cardiology: From Decision-Making Aid to Advanced Interventional Procedure Assistance

P Sardar, JD Abbott, A Kundu et al. Keywords: artificial intelligence; interventional cardiology

ABSTRACT


Access to big data analyzed by supercomputers using advanced mathematical algorithms (i.e., deep machine learning) has allowed for enhancement of cognitive output (i.e., visual imaging interpretation) to previously unseen levels and promises to fundamentally change the practice of medicine. This field, known as “artificial intelligence” (AI), is making significant progress in areas such as automated clinical decision making, medical imaging analysis, and interventional procedures, and has the potential to dramatically influence the practice of interventional cardiology. The unique nature of interventional cardiology makes it an ideal target for the development of AI-based technologies designed to improve real-time clinical decision making, streamline workflow in the catheterization laboratory, and standardize catheter-based procedures through advanced robotics. This review provides an introduction to AI by highlighting its scope, potential applications, and limitations in interventional cardiology.