CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries Endorsed Future of Personalized Cardiovascular Medicine Management of two major complications in the cardiac catheterisation laboratory: the no-reflow phenomenon and coronary perforations Blood CSF1 and CXCL12 as Causal Mediators of Coronary Artery Disease Statin Safety and Associated Adverse Events: A Scientific Statement From the American Heart Association Predicting the 10-Year Risks of Atherosclerotic Cardiovascular Disease in Chinese Population: The China-PAR Project (Prediction for ASCVD Risk in China) Long-Term Effect of Ultrathin-Strut Versus Thin-Strut Drug-Eluting Stents in Patients With Small Vessel Coronary Artery Disease Undergoing Percutaneous Coronary Intervention: A Subgroup Analysis of the BIOSCIENCE Randomized Trial Validation of High-Risk Features for Stent-Related Ischemic Events as Endorsed by the 2017 DAPT Guidelines

Volume 74, Issue 16, October 2019

JOURNAL:J Am Coll Cardiol. Article Link

Nonproportional Hazards for Time-to-Event Outcomes in Clinical Trials: JACC Review Topic of the Week

J Gregson, L Sharples, GW Stone et al. Keywords: clinical trials; Cox proportional hazards; nonproportional hazards; statistics; time-to-event outcomes; trial design

ABSTRACT


Most major clinical trials in cardiology report time-to-event outcomes using the Cox proportional hazards model so that a treatment effect is estimated as the hazard ratio between groups, accompanied by its 95% confidence interval and a log-rank p value. But nonproportionality of hazards (non-PH) over time occurs quite often, making alternative analysis strategies appropriate. This review presents real examples of cardiology trials with different types of non-PH: an early treatment effect, a late treatment effect, and a diminishing treatment effect. In such scenarios, the relative merits of a Cox model, an accelerated failure time model, a milestone analysis, and restricted mean survival time are examined. Some post hoc analyses for exploring any specific pattern of non-PH are also presented. Recommendations are made, particularly regarding how to handle non-PH in pre-defined Statistical Analysis Plans, trial publications, and regulatory submissions.