CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

SCAI Expert Consensus Statement Update on Best Practices for Transradial Angiography and Intervention Cardiac Sympathetic Denervation for Refractory Ventricular Arrhythmias Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure Incidence, Treatment, and Outcomes of Coronary Perforation During Chronic Total Occlusion Percutaneous Coronary Intervention Clinician’s Guide to Reducing Inflammation to Reduce Atherothrombotic Risk 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA /ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary : A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines Everolimus-Eluting Bioresorbable Scaffolds Versus Everolimus-Eluting Metallic Stents

Original ResearchVolume 75, Issue 12, March 2020

JOURNAL:J Am Coll Cardiol. Article Link

2-Year Outcomes After Stenting of Lipid-Rich and Nonrich Coronary Plaques

MHwa Yamamoto, A Maehara, GW Stone et al. Keywords: IVUS; lipid-rich plaque; near-infrared spectroscopy; stent

ABSTRACT


BACKGROUND- Autopsy studies suggest that implanting stents in lipid-rich plaque (LRP) may be associated with adverse outcomes.

 

OBJECTIVES- The purpose of this study was to evaluate the association between LRP detected by near-infrared spectroscopy (NIRS) and clinical outcomes in patients with coronary artery disease treated with contemporary drug-eluting stents.

 

METHODS- In this prospective, multicenter registry, NIRS was performed in patients undergoing coronary angiography and possible percutaneous coronary intervention (PCI). Lipid core burden index (LCBI) was calculated as the fraction of pixels with the probability of LRP >0.6 within a region of interest. MaxLCBI4mm was defined as the maximum LCBI within any 4-mm-long segment. Major adverse cardiac events (MACE) included cardiac death, myocardial infarction, definite or probable stent thrombosis, or unplanned revascularization or rehospitalization for progressive angina or unstable angina. Events were subcategorized as culprit (treated) lesionrelated, nonculprit (untreated) lesionrelated, or indeterminate.

 

RESULTS- Among 1,999 patients who were enrolled in the COLOR (Chemometric Observations of Lipid Core Plaques of Interest in Native Coronary Arteries Registry), PCI was performed in 1,621 patients and MACE occurred in 18.0% of patients, of which 8.3% were culprit lesionrelated, 10.7% were nonculprit lesionrelated, and 3.1% were indeterminate during 2-year follow-up. Complications from NIRS imaging occurred in 9 patients (0.45%), which resulted in 1 peri-procedural myocardial infarction and 1 emergent coronary bypass. Pre-PCI NIRS imaging was obtained in 1,189 patients, and the 2-year rate of culprit lesionrelated MACE was not significantly associated with maxLCBI4mm (hazard ratio of maxLCBI4mm per 100: 1.06; 95% confidence interval: 0.96 to 1.17; p = 0.28) after adjusting clinical and procedural factors.

 

CONCLUSIONS- Following PCI with contemporary drug-eluting stents, stent implantation in NIRS-defined LRPs was not associated with increased periprocedural or late adverse outcomes compared with those without significant lipid.