CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

Biological Phenotypes of Heart Failure With Preserved Ejection Fraction Association of preoperative glucose concentration with myocardial injury and death after non-cardiac surgery (GlucoVISION): a prospective cohort study Percutaneous Coronary Intervention Readmissions Where Are the Solutions? The year in cardiovascular medicine 2020: interventional cardiology Update in the Percutaneous Management of Coronary Chronic Total Occlusions Comparison of a Novel Biodegradable Polymer Sirolimus-Eluting Stent With a Durable Polymer Everolimus-Eluting Stent 5-Year Outcomes of the Randomized BIOFLOW-II Trial Reappraisal of Reported Genes for Sudden Arrhythmic Death: An Evidence-Based Evaluation of Gene Validity for Brugada Syndrome Defining Staged Procedures for Percutaneous Coronary Intervention Trials A Guidance Document

Original Research2017 Aug 24;548(7668):413-419.

JOURNAL:Nature. Article Link

Correction of a pathogenic gene mutation in human embryos

Ma H, Marti-Gutierrez N, Mitalipov S et al. Keywords: ​genome editing; MYBPC3 mutation; inherited hypertrophic cardiomyopathy

ABSTRACT


Genome editing has potential for the targeted correction of germline mutations. Here we describe the correction of the heterozygous MYBPC3 mutation in human preimplantation embryos with precise CRISPR-Cas9-based targeting accuracy and high homology-directed repair efficiency by activating an endogenous, germline-specific DNA repair response. Induced double-strand breaks (DSBs) at the mutant paternal allele were predominantly repaired using the homologous wild-type maternal gene instead of a synthetic DNA template. By modulating the cell cycle stage at which the DSB was induced, we were able to avoid mosaicism in cleaving embryos and achieve a high yield of homozygous embryos carrying the wild-type MYBPC3 gene without evidence of off-target mutations. The efficiency, accuracy and safety of the approach presented suggest that it has potential to be used for the correction of heritable mutations in human embryos by complementing preimplantation genetic diagnosis. However, much remains to be considered before clinical applications, including the reproducibility of the technique with other heterozygous mutations.