CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

Impact of percutaneous coronary intervention extent, complexity and platelet reactivity on outcomes after drug-eluting stent implantation Safety and feasibility of robotic percutaneous coronary intervention: PRECISE (Percutaneous Robotically-Enhanced Coronary Intervention) Study Appropriate Use Criteria and Health Status Outcomes Following Chronic Total Occlusion Percutaneous Coronary Intervention: Insights From the OPEN-CTO Registry Management of Percutaneous Coronary Intervention Complications: Algorithms From the 2018 and 2019 Seattle Percutaneous Coronary Intervention Complications Conference Level of Scientific Evidence Underlying the Current American College of Cardiology/American Heart Association Clinical Practice Guidelines 2018 ACC Expert Consensus Decision Pathway on Novel Therapies for Cardiovascular Risk Reduction in Patients With Type 2 Diabetes and Atherosclerotic Cardiovascular Disease A Report of the American College of Cardiology Task Force on Expert Consensus Decision Pathways Update on Prevention of Cardiovascular Disease in Adults With Type 2 Diabetes Mellitus in Light of Recent Evidence: A Scientific Statement From the American Heart Association and the American Diabetes Association Invasive Coronary Physiology After Stent Implantation: Another Step Toward Precision Medicine

Original Research2017 Aug 24;548(7668):413-419.

JOURNAL:Nature. Article Link

Correction of a pathogenic gene mutation in human embryos

Ma H, Marti-Gutierrez N, Mitalipov S et al. Keywords: ​genome editing; MYBPC3 mutation; inherited hypertrophic cardiomyopathy

ABSTRACT


Genome editing has potential for the targeted correction of germline mutations. Here we describe the correction of the heterozygous MYBPC3 mutation in human preimplantation embryos with precise CRISPR-Cas9-based targeting accuracy and high homology-directed repair efficiency by activating an endogenous, germline-specific DNA repair response. Induced double-strand breaks (DSBs) at the mutant paternal allele were predominantly repaired using the homologous wild-type maternal gene instead of a synthetic DNA template. By modulating the cell cycle stage at which the DSB was induced, we were able to avoid mosaicism in cleaving embryos and achieve a high yield of homozygous embryos carrying the wild-type MYBPC3 gene without evidence of off-target mutations. The efficiency, accuracy and safety of the approach presented suggest that it has potential to be used for the correction of heritable mutations in human embryos by complementing preimplantation genetic diagnosis. However, much remains to be considered before clinical applications, including the reproducibility of the technique with other heterozygous mutations.