CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

Utilization and programming of an automatic MRI recognition feature for cardiac rhythm management devices Development and validation of a simple risk score to predict 30-day readmission after percutaneous coronary intervention in a cohort of medicare patients Prospective Elimination of Distal Coronary Sinus to Left Atrial Connection for Atrial Fibrillation Ablation (PRECAF) Randomized Controlled Trial Randomized Trial Evaluating Percutaneous Coronary Intervention for the Treatment of Chronic Total Occlusion: The DECISION-CTO Trial The HACD4 haplotype as a risk factor for atherosclerosis in males Cholesterol-Lowering Agents Percutaneous Recanalization of Chronic Total Occlusions: 2019 Consensus Document from the EuroCTO Club From Nonclinical Research to Clinical Trials and Patient-registries: Challenges and Opportunities in Biomedical Research

Original Research2017 Aug 24;548(7668):413-419.

JOURNAL:Nature. Article Link

Correction of a pathogenic gene mutation in human embryos

Ma H, Marti-Gutierrez N, Mitalipov S et al. Keywords: ​genome editing; MYBPC3 mutation; inherited hypertrophic cardiomyopathy

ABSTRACT


Genome editing has potential for the targeted correction of germline mutations. Here we describe the correction of the heterozygous MYBPC3 mutation in human preimplantation embryos with precise CRISPR-Cas9-based targeting accuracy and high homology-directed repair efficiency by activating an endogenous, germline-specific DNA repair response. Induced double-strand breaks (DSBs) at the mutant paternal allele were predominantly repaired using the homologous wild-type maternal gene instead of a synthetic DNA template. By modulating the cell cycle stage at which the DSB was induced, we were able to avoid mosaicism in cleaving embryos and achieve a high yield of homozygous embryos carrying the wild-type MYBPC3 gene without evidence of off-target mutations. The efficiency, accuracy and safety of the approach presented suggest that it has potential to be used for the correction of heritable mutations in human embryos by complementing preimplantation genetic diagnosis. However, much remains to be considered before clinical applications, including the reproducibility of the technique with other heterozygous mutations.