CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

Utilization and programming of an automatic MRI recognition feature for cardiac rhythm management devices Development and validation of a simple risk score to predict 30-day readmission after percutaneous coronary intervention in a cohort of medicare patients Prospective Elimination of Distal Coronary Sinus to Left Atrial Connection for Atrial Fibrillation Ablation (PRECAF) Randomized Controlled Trial Randomized Trial Evaluating Percutaneous Coronary Intervention for the Treatment of Chronic Total Occlusion: The DECISION-CTO Trial The HACD4 haplotype as a risk factor for atherosclerosis in males Cholesterol-Lowering Agents Percutaneous Recanalization of Chronic Total Occlusions: 2019 Consensus Document from the EuroCTO Club From Nonclinical Research to Clinical Trials and Patient-registries: Challenges and Opportunities in Biomedical Research

Original Research2022 May, 79 (21) 2097–2115

JOURNAL:J Am Coll Cardiol. Article Link

Circadian Cadence and NR1D1 Tune Cardiovascular Disease

YC Zhao , XY Lu , F W et al.

ABSTRACT

BACKGROUND - Shift work is associated with increased risk of acute myocardial infarction (AMI) and worsened prognosis. However, the mechanisms linking shift work and worsened prognosis in AMI remain unclear.

OBJECTIVES - This study sought to investigate the impact of shift work on reperfusion injury, a major determinant of clinical outcomes in AMI.


METHODS - Study patient data were obtained from the database of the EARLY-MYO-CMR (Early Assessment of Myocardial Tissue Characteristics by CMR in STEMI) registry, which was a prospective, multicenter registry of patients with ST-segment elevation myocardial infarction (STEMI) undergoing cardiac magnetic resonance (CMR) imaging after reperfusion therapy. The primary endpoint was CMR-defined post-reperfusion infarct size. A secondary clinical endpoint was the composite of major adverse cardiac events (MACE) during follow-up. Potential mechanisms were explored with the use of preclinical animal AMI models.


RESULTS - Of 706 patients enrolled in the EARLY-MYO-CMR registry, 412 patients with STEMI were ultimately included. Shift work was associated with increased CMR-defined infarct size (β = 5.94%; 95% CI: 2.94-8.94; P < 0.0001). During a median follow-up of 5.0 years, shift work was associated with increased risks of MACE (adjusted HR: 1.92; 95% CI: 1.12-3.29; P = 0.017). Consistent with clinical findings, shift work simulation in mice and sheep significantly augmented reperfusion injury in AMI. Mechanism studies identified a novel nuclear receptor subfamily 1 group D member 1/cardiotrophin-like cytokine factor 1 axis in the heart that played a crucial role in mediating the detrimental effects of shift work on myocardial injury.


CONCLUSIONS - The current study provided novel findings that shift work increases myocardial infarction reperfusion injury. It identified a novel nuclear receptor subfamily 1 group D member 1/cardiotrophin-like cytokine factor 1 axis in the heart that might play a crucial role in mediating this process. (Early Assessment of Myocardial Tissue Characteristics by CMR in STEMI [EARLY-MYO-CMR] registry; NCT03768453)