CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

SCAI Expert Consensus Statement Update on Best Practices for Transradial Angiography and Intervention Cardiac Sympathetic Denervation for Refractory Ventricular Arrhythmias Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure Incidence, Treatment, and Outcomes of Coronary Perforation During Chronic Total Occlusion Percutaneous Coronary Intervention Clinician’s Guide to Reducing Inflammation to Reduce Atherothrombotic Risk 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA /ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary : A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines Everolimus-Eluting Bioresorbable Scaffolds Versus Everolimus-Eluting Metallic Stents

Original Research2022 Jun 20;e13826.

JOURNAL:Eur J Clin Invest. Article Link

Prognostic implication of lipidomics in patients with coronary total occlusion undergoing PCI

Y Zhou, XD Wang, JY Qian et al. Keywords: biomarker; CTO; CAD; lipidomics; risk prediction

ABSTRACT

BACKGROUND - Predictors of prognosis in patients with coronary chronic total occlusion (CTO) undergoing elective percutaneous coronary intervention (PCI) have remained lacking. Lipidomic profiling enable researchers to associated lipid species with disease progression and may improve the prediction of cardiovascular events.


METHODS- In the present study, 781 lipids were measured by targeted lipidomic profiling in 350 individuals (50 healthy controls, 50 patients with coronary artery disease and 250 patients with CTO). L1-regularized logistic regression was used to identify lipid species associated with adverse cardiovascular events and create predicting models which were verified by 10-fold cross-validation (200 repeats). Comparisons were made between a traditional model constructed with clinical characteristics alone and a combined model built with both lipidomic data and traditional factors.


RESULTS - 24 lipid species were dysregulated exclusively in patients with CTO, most of which belonged to sphingomyelin (SM) and triacylglycerol (TAG). Compared with traditional risk factors, new model combining lipids and traditional factors had significantly improved performance in predicting adverse cardiovascular events in CTO patients after PCI (area under the curve, 0.870 vs. 0.726, p < 0.05; Akaike information criterion, 129 vs. 156; net reclassification improvement, 0.312, p < 0.001; integrated discrimination improvement, 0.244, p < 0.001). Nomogram was built based on the incorporated model and prove efficient by Kaplan-Meier method.


CONCLUSIONS - Lipidomic profiling revealed lipid species which may participated in the formation of CTO and could contribute to the risk stratification in CTO patients undergoing PCI.