CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

Guiding Principles for Chronic Total Occlusion Percutaneous Coronary Intervention Spontaneous Coronary Artery Dissection: JACC State-of-the-Art Review The spectrum of chronic coronary syndromes: genetics, imaging, and management after PCI and CABG Home-Based Cardiac Rehabilitation: A Scientific Statement From the American Association of Cardiovascular and Pulmonary Rehabilitation, the American Heart Association, and the American College of Cardiology Randomized Comparison of Everolimus- and Zotarolimus-Eluting Coronary Stents With Biolimus-Eluting Stents in All-Comer Patients Post-Stroke Cardiovascular Complications and Neurogenic Cardiac Injury: JACC State-of-the-Art Review 2020 AHA/ACC Key Data Elements and Definitions for Coronary Revascularization A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards (Writing Committee to Develop Clinical Data Standards for Coronary Revascularization) Contrast-Associated Acute Kidney Injury and Serious Adverse Outcomes Following Angiography

Review Article2017 Oct 31;70(18):2278-2289.

JOURNAL:J Am Coll Cardiol. Article Link

Interleukin-1 Beta as a Target for Atherosclerosis Therapy: Biological Basis of CANTOS and Beyond

Libby P Keywords: acute coronary syndromes; high-sensitivity C-reactive protein; interleukin-1; myocardial infarction

ABSTRACT


Inflammatory pathways drive atherogenesis and link conventional risk factors to atherosclerosis and its complications. One inflammatory mediator has come to the fore as a therapeutic target in cardiovascular disease. The experimental and clinical evidence reviewed here support interleukin-1 beta (IL-1β) as both a local vascular and systemic contributor in this regard. Intrinsic vascular wall cells and lesional leukocytes alike can produce this cytokine. Local stimuli in the plaque favor the generation of active IL-1β through the action of a molecular assembly known as the inflammasome. Clinically applicable interventions that interfere with IL-1 action can improve cardiovascular outcomes, ushering in a new era of anti-inflammatory therapies for atherosclerosis. The translational path described here illustrates how advances in basic vascular biology may transform therapy. Biomarker-directed application of anti-inflammatory interventions promises to help us achieve a more precise and personalized allocation of therapy for our cardiovascular patients.