CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

Efficacy and safety of rosuvastatin vs. atorvastatin in lowering LDL cholesterol : A meta-analysis of trials with East Asian populations 2014 AHA/ACC Guideline for the Management of Patients with Non-ST-Elevation Acute Coronary Syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines Drug-coated balloons for small coronary artery disease (BASKET-SMALL 2): an open-label randomised non-inferiority trial Incidence of contrast-induced acute kidney injury in a large cohort of all-comers undergoing percutaneous coronary intervention: Comparison of five contrast media A Randomized Trial to Assess Regional Left Ventricular Function After Stent Implantation in Chronic Total Occlusion The REVASC Trial Coronary Catheterization and Percutaneous Coronary Intervention in China: 10-Year Results From the China PEACE-Retrospective CathPCI Study Management of No-Reflow Phenomenon in the Catheterization Laboratory Developing and Testing a Personalized, Evidence-Based, Shared Decision-Making Tool for Stent Selection in Percutaneous Coronary Intervention Using a Pre-Post Study Design

Review Article2017 Jul 11;70(2):212-229.

JOURNAL:J Am Coll Cardiol. Article Link

Impact of Oxidative Stress on the Heart and Vasculature: Part 2 of a 3-Part Series

Münzel T, Camici GG, Kovacic JC et al. Keywords: cardiac; reactive oxygen species; vascular

ABSTRACT


Vascular disease and heart failure impart an enormous burden in terms of global morbidity and mortality. Although there are many different causes of cardiac and vascular disease, most causes share an important pathological mechanism: oxidative stress. In the failing heart, oxidative stress occurs in the myocardium and correlates with left ventricular dysfunction. Reactive oxygen species (ROS) negatively affect myocardial calcium handling, cause arrhythmia, and contribute to cardiac remodeling by inducing hypertrophic signaling, apoptosis, and necrosis. Similarly, oxidative balance in the vasculature is tightly regulated by a wealth of pro- and antioxidant systems that orchestrate region-specific ROS production and removal. Reactive oxygen species also regulate multiple vascular cell functions, including endothelial and smooth muscle cell growth, proliferation, and migration; angiogenesis; apoptosis; vascular tone; host defenses; and genomic stability. However, excessive levels of ROS promote vascular disease through direct and irreversible oxidative damage to macromolecules, as well as disruption of redox-dependent vascular wall signaling processes.