CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

Biological Phenotypes of Heart Failure With Preserved Ejection Fraction Association of preoperative glucose concentration with myocardial injury and death after non-cardiac surgery (GlucoVISION): a prospective cohort study Percutaneous Coronary Intervention Readmissions Where Are the Solutions? The year in cardiovascular medicine 2020: interventional cardiology Update in the Percutaneous Management of Coronary Chronic Total Occlusions Reappraisal of Reported Genes for Sudden Arrhythmic Death: An Evidence-Based Evaluation of Gene Validity for Brugada Syndrome Comparison of a Novel Biodegradable Polymer Sirolimus-Eluting Stent With a Durable Polymer Everolimus-Eluting Stent 5-Year Outcomes of the Randomized BIOFLOW-II Trial Mortality Differences Associated With Treatment Responses in CANTOS and FOURIER: Insights and Implications

Review Article2017 Jul 11;70(2):212-229.

JOURNAL:J Am Coll Cardiol. Article Link

Impact of Oxidative Stress on the Heart and Vasculature: Part 2 of a 3-Part Series

Münzel T, Camici GG, Kovacic JC et al. Keywords: cardiac; reactive oxygen species; vascular

ABSTRACT


Vascular disease and heart failure impart an enormous burden in terms of global morbidity and mortality. Although there are many different causes of cardiac and vascular disease, most causes share an important pathological mechanism: oxidative stress. In the failing heart, oxidative stress occurs in the myocardium and correlates with left ventricular dysfunction. Reactive oxygen species (ROS) negatively affect myocardial calcium handling, cause arrhythmia, and contribute to cardiac remodeling by inducing hypertrophic signaling, apoptosis, and necrosis. Similarly, oxidative balance in the vasculature is tightly regulated by a wealth of pro- and antioxidant systems that orchestrate region-specific ROS production and removal. Reactive oxygen species also regulate multiple vascular cell functions, including endothelial and smooth muscle cell growth, proliferation, and migration; angiogenesis; apoptosis; vascular tone; host defenses; and genomic stability. However, excessive levels of ROS promote vascular disease through direct and irreversible oxidative damage to macromolecules, as well as disruption of redox-dependent vascular wall signaling processes.