CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

Cardiopulmonary Exercise Testing: What Is its Value? Contemporary Management of Cardiogenic Shock: A Scientific Statement From the American Heart Association Alirocumab Reduces Total Nonfatal Cardiovascular and Fatal Events in the ODYSSEY OUTCOMES Trial Transcatheter Mitral-Valve Repair in Patients with Heart Failure Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease Volume brings value Systematic Review for the 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society

Review Article2017 Jul 11;70(2):212-229.

JOURNAL:J Am Coll Cardiol. Article Link

Impact of Oxidative Stress on the Heart and Vasculature: Part 2 of a 3-Part Series

Münzel T, Camici GG, Kovacic JC et al. Keywords: cardiac; reactive oxygen species; vascular

ABSTRACT


Vascular disease and heart failure impart an enormous burden in terms of global morbidity and mortality. Although there are many different causes of cardiac and vascular disease, most causes share an important pathological mechanism: oxidative stress. In the failing heart, oxidative stress occurs in the myocardium and correlates with left ventricular dysfunction. Reactive oxygen species (ROS) negatively affect myocardial calcium handling, cause arrhythmia, and contribute to cardiac remodeling by inducing hypertrophic signaling, apoptosis, and necrosis. Similarly, oxidative balance in the vasculature is tightly regulated by a wealth of pro- and antioxidant systems that orchestrate region-specific ROS production and removal. Reactive oxygen species also regulate multiple vascular cell functions, including endothelial and smooth muscle cell growth, proliferation, and migration; angiogenesis; apoptosis; vascular tone; host defenses; and genomic stability. However, excessive levels of ROS promote vascular disease through direct and irreversible oxidative damage to macromolecules, as well as disruption of redox-dependent vascular wall signaling processes.