CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

Best Practices for the Prevention of Radial Artery Occlusion After Transradial Diagnostic Angiography and Intervention An International Consensus Paper Association of CYP2C19 Loss-of-Function Alleles with Major Adverse Cardiovascular Events of Clopidogrel in Stable Coronary Artery Disease Patients Undergoing Percutaneous Coronary Intervention: Meta-analysis Non-cardiac surgery in patients with coronary artery disease: risk evaluation and periprocedural management Treatment of higher-risk patients with an indication for revascularization: evolution within the field of contemporary percutaneous coronary intervention Same-Day Discharge After Elective Percutaneous Coronary Intervention: Insights From the British Cardiovascular Intervention Society Microthrombi As A Major Cause of Cardiac Injury in COVID-19: A Pathologic Study Long-Term Outcomes of Biodegradable Versus Second-Generation Durable Polymer Drug-Eluting Stent Implantations for Myocardial Infarction Rare Genetic Variants Associated With Sudden Cardiac Death in Adults

Review Article2017 Jul 11;70(2):212-229.

JOURNAL:J Am Coll Cardiol. Article Link

Impact of Oxidative Stress on the Heart and Vasculature: Part 2 of a 3-Part Series

Münzel T, Camici GG, Kovacic JC et al. Keywords: cardiac; reactive oxygen species; vascular

ABSTRACT


Vascular disease and heart failure impart an enormous burden in terms of global morbidity and mortality. Although there are many different causes of cardiac and vascular disease, most causes share an important pathological mechanism: oxidative stress. In the failing heart, oxidative stress occurs in the myocardium and correlates with left ventricular dysfunction. Reactive oxygen species (ROS) negatively affect myocardial calcium handling, cause arrhythmia, and contribute to cardiac remodeling by inducing hypertrophic signaling, apoptosis, and necrosis. Similarly, oxidative balance in the vasculature is tightly regulated by a wealth of pro- and antioxidant systems that orchestrate region-specific ROS production and removal. Reactive oxygen species also regulate multiple vascular cell functions, including endothelial and smooth muscle cell growth, proliferation, and migration; angiogenesis; apoptosis; vascular tone; host defenses; and genomic stability. However, excessive levels of ROS promote vascular disease through direct and irreversible oxidative damage to macromolecules, as well as disruption of redox-dependent vascular wall signaling processes.