CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

Coronary Angiography after Cardiac Arrest — The Right Timing or the Right Patients? Sudden Cardiac Arrest Survivorship: A Scientific Statement From the American Heart Association Qualitative Methodology in Cardiovascular Outcomes Research: A Contemporary Look 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines Impact of percutaneous coronary intervention extent, complexity and platelet reactivity on outcomes after drug-eluting stent implantation 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons Percutaneous coronary intervention using a combination of robotics and telecommunications by an operator in a separate physical location from the patient: an early exploration into the feasibility of telestenting (the REMOTE-PCI study) 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology

Review Article2017 Jun 6;69(22):2759-2768.

JOURNAL:J Am Coll Cardiol. Article Link

LOX-1 in Atherosclerosis and Myocardial Ischemia: Biology, Genetics, and Modulation

Pothineni NVK, Karathanasis SK, Mehta JL et al. Keywords: LOX-1 blockers; coronary artery disease; endothelial cells; low-density lipoprotein; myocardial infarction; reactive oxygen species

ABSTRACT


Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), one of the scavenger receptors for oxidized low-density lipoprotein cholesterol (ox-LDL), plays a crucial role in the uptake of ox-LDL by cells in the arterial wall. Mounting evidence suggests a role for LOX-1 in various steps of the atherosclerotic process, from initiation to plaque destabilization. Studies of the genetic structure of LOX-1 have also uncovered various genetic polymorphisms that could modulate the risk of atherosclerotic cardiovascular events. As evidence supporting the vital role of LOX-1 in atherogenesis keeps accumulating, there is growing interest in LOX-1 as a potential therapeutic target. This review discusses the discovery and genetics of LOX-1; describes existing evidence supporting the role of LOX-1 in atherogenesis and its major complication, myocardial ischemia; and summarizes LOX-1 modulation by some naturally occurring compounds and efforts toward development of small molecules and biologics that could be of therapeutic use.