CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

Efficacy and safety of rosuvastatin vs. atorvastatin in lowering LDL cholesterol : A meta-analysis of trials with East Asian populations Drug-coated balloons for small coronary artery disease (BASKET-SMALL 2): an open-label randomised non-inferiority trial 2014 AHA/ACC Guideline for the Management of Patients with Non-ST-Elevation Acute Coronary Syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines Incidence of contrast-induced acute kidney injury in a large cohort of all-comers undergoing percutaneous coronary intervention: Comparison of five contrast media Coronary Catheterization and Percutaneous Coronary Intervention in China: 10-Year Results From the China PEACE-Retrospective CathPCI Study A Randomized Trial to Assess Regional Left Ventricular Function After Stent Implantation in Chronic Total Occlusion The REVASC Trial Management of No-Reflow Phenomenon in the Catheterization Laboratory Developing and Testing a Personalized, Evidence-Based, Shared Decision-Making Tool for Stent Selection in Percutaneous Coronary Intervention Using a Pre-Post Study Design

JOURNAL:J Am Coll Cardiol. Article Link

The Role of Nitroglycerin and Other Nitrogen Oxides in Cardiovascular Therapeutics

Divakaran S, Loscalzo J et al. Keywords: angina; nitrate; nitrate-nitrite-NO pathway; nitric oxide; nitroglycerin; soluble guanylyl cyclase


The use of nitroglycerin in the treatment of angina pectoris began not long after its original synthesis in 1847. Since then, the discovery of nitric oxide as a biological effector and better understanding of its roles in vasodilation, cell permeability, platelet function, inflammation, and other vascular processes have advanced our knowledge of the hemodynamic (mostly mediated through vasodilation of capacitance and conductance arteries) and nonhemodynamic effects of organic nitrate therapy, via both nitric oxide-dependent and -independent mechanisms. Nitrates are rapidly absorbed from mucous membranes, the gastrointestinal tract, and the skin; thus, nitroglycerin is available in a number of preparations for delivery via several routes: oral tablets, sublingual tablets, buccal tablets, sublingual spray, transdermal ointment, and transdermal patch, as well as intravenous formulations. Organic nitrates are commonly used in the treatment of cardiovascular disease, but clinical data limit their use mostly to the treatment of angina. They are also used in the treatment of subsets of patients with heart failure and pulmonary hypertension. One major limitation of the use of nitrates is the development of tolerance. Although several agents have been studied for use in the prevention of nitrate tolerance, none are currently recommended owing to a paucity of supportive clinical data. Only 1 method of preventing nitrate tolerance remains widely accepted: the use of a dosing strategy that provides an interval of no or low nitrate exposure during each 24-h period. Nitric oxide's important role in several cardiovascular disease mechanisms continues to drive research toward finding novel ways to affect both endogenous and exogenous sources of this key molecular mediator.