CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

Best Practices for the Prevention of Radial Artery Occlusion After Transradial Diagnostic Angiography and Intervention An International Consensus Paper Association of CYP2C19 Loss-of-Function Alleles with Major Adverse Cardiovascular Events of Clopidogrel in Stable Coronary Artery Disease Patients Undergoing Percutaneous Coronary Intervention: Meta-analysis Treatment of higher-risk patients with an indication for revascularization: evolution within the field of contemporary percutaneous coronary intervention Non-cardiac surgery in patients with coronary artery disease: risk evaluation and periprocedural management Same-Day Discharge After Elective Percutaneous Coronary Intervention: Insights From the British Cardiovascular Intervention Society Microthrombi As A Major Cause of Cardiac Injury in COVID-19: A Pathologic Study Long-Term Outcomes of Biodegradable Versus Second-Generation Durable Polymer Drug-Eluting Stent Implantations for Myocardial Infarction Routine Continuous Electrocardiographic Monitoring Following Percutaneous Coronary Interventions

JOURNAL:J Am Coll Cardiol. Article Link

The Role of Nitroglycerin and Other Nitrogen Oxides in Cardiovascular Therapeutics

Divakaran S, Loscalzo J et al. Keywords: angina; nitrate; nitrate-nitrite-NO pathway; nitric oxide; nitroglycerin; soluble guanylyl cyclase


The use of nitroglycerin in the treatment of angina pectoris began not long after its original synthesis in 1847. Since then, the discovery of nitric oxide as a biological effector and better understanding of its roles in vasodilation, cell permeability, platelet function, inflammation, and other vascular processes have advanced our knowledge of the hemodynamic (mostly mediated through vasodilation of capacitance and conductance arteries) and nonhemodynamic effects of organic nitrate therapy, via both nitric oxide-dependent and -independent mechanisms. Nitrates are rapidly absorbed from mucous membranes, the gastrointestinal tract, and the skin; thus, nitroglycerin is available in a number of preparations for delivery via several routes: oral tablets, sublingual tablets, buccal tablets, sublingual spray, transdermal ointment, and transdermal patch, as well as intravenous formulations. Organic nitrates are commonly used in the treatment of cardiovascular disease, but clinical data limit their use mostly to the treatment of angina. They are also used in the treatment of subsets of patients with heart failure and pulmonary hypertension. One major limitation of the use of nitrates is the development of tolerance. Although several agents have been studied for use in the prevention of nitrate tolerance, none are currently recommended owing to a paucity of supportive clinical data. Only 1 method of preventing nitrate tolerance remains widely accepted: the use of a dosing strategy that provides an interval of no or low nitrate exposure during each 24-h period. Nitric oxide's important role in several cardiovascular disease mechanisms continues to drive research toward finding novel ways to affect both endogenous and exogenous sources of this key molecular mediator.